#include void run_rich_sim_tb(Int_t nEvents = 1000) { TTree::SetMaxTreeSize(90000000000); TString script = TString(gSystem->Getenv("SCRIPT")); TString myName = "run_sim_tb"; // this macro's name for screen output TString srcDir = gSystem->Getenv("VMCWORKDIR"); // top source directory TString geoSetupFile = srcDir + "/macro/rich/geosetup/rich_setup_sis300_tb.C"; TString urqmdFile = "/Users/slebedev/Development/cbm/data/urqmd/auau/25gev/mbias/urqmd.auau.25gev.mbias.00001.root"; TString outDir = "/Users/slebedev/Development/cbm/data/sim/rich/tb/"; TString parFile = outDir + "param.00001.root"; TString mcFile = outDir + "mc.00001.root"; TString geoFile = outDir + "geofile.00001.root"; remove(parFile.Data()); remove(mcFile.Data()); remove(geoFile.Data()); // Target geometry TString targetElement = "Gold"; Double_t targetThickness = 0.025; // full thickness in cm Double_t targetDiameter = 2.5; // diameter in cm Double_t targetPosX = 0.; // target x position in global c.s. [cm] Double_t targetPosY = 0.; // target y position in global c.s. [cm] Double_t targetPosZ = 0.; // target z position in global c.s. [cm] Double_t targetRotY = 0.; // target rotation angle around the y axis [deg] // primary vertex Bool_t smearVertexXY = kTRUE; Bool_t smearVertexZ = kTRUE; Double_t beamWidthX = 0.1; // Gaussian sigma of the beam profile in x [cm] Double_t beamWidthY = 0.1; // Gaussian sigma of the beam profile in y [cm] TStopwatch timer; timer.Start(); gDebug = 0; FairRunSim* run = new FairRunSim(); run->SetName("TGeant3"); run->SetOutputFile(mcFile); run->SetGenerateRunInfo(kTRUE); FairLogger::GetLogger()->SetLogScreenLevel("INFO"); FairLogger::GetLogger()->SetLogVerbosityLevel("LOW"); TString setupFunct = "do_setup()"; std::cout << "-I- " << myName << ": Loading macro " << geoSetupFile << std::endl; gROOT->LoadMacro(geoSetupFile); gROOT->ProcessLine(setupFunct); // You can modify the pre-defined setup by using // CbmSetup::Instance()->RemoveModule(ESystemId) or // CbmSetup::Instance()->SetModule(ESystemId, const char*, Bool_t) or // CbmSetup::Instance()->SetActive(ESystemId, Bool_t) // See the class documentation of CbmSetup. std::cout << std:: endl << "-I- " << myName << ": Setting media file" << std::endl; run->SetMaterials("media.geo"); // Materials TString macroName = gSystem->Getenv("VMCWORKDIR"); macroName += "/macro/run/modules/registerSetup.C"; std::cout << std::endl << "Loading macro " << macroName << std::endl; gROOT->LoadMacro(macroName); gROOT->ProcessLine("registerSetup()"); std::cout << std::endl << "-I- " << myName << ": Registering target" << std::endl; CbmTarget* target = new CbmTarget(targetElement.Data(), targetThickness, targetDiameter); target->SetPosition(targetPosX, targetPosY, targetPosZ); target->SetRotation(targetRotY); target->Print(); run->AddModule(target); // Magnetic field std::cout << std::endl << "-I- " << myName << ": Registering magnetic field" << std::endl; CbmFieldMap* magField = CbmSetup::Instance()->CreateFieldMap(); if ( !magField ) { std::cout << "-ERROR- : No valid field!"; return; } run->SetField(magField); // PrimaryGenerator std::cout << std::endl << "-I- " << myName << ": Registering event generators" << std::endl; FairPrimaryGenerator* primGen = new FairPrimaryGenerator(); // --- Uniform distribution of event plane angle primGen->SetEventPlane(0., 2. * TMath::Pi()); // --- Get target parameters Double_t tX = 0.; Double_t tY = 0.; Double_t tZ = 0.; Double_t tDz = 0.; if ( target ) { target->GetPosition(tX, tY, tZ); tDz = target->GetThickness(); } primGen->SetTarget(tZ, tDz); primGen->SetBeam(0., 0., beamWidthX, beamWidthY); primGen->SmearGausVertexXY(smearVertexXY); primGen->SmearVertexZ(smearVertexZ); CbmUnigenGenerator* urqmdGen = new CbmUnigenGenerator(urqmdFile); urqmdGen->SetEventPlane(0. , 360.); urqmdGen->SetEventPlane(0. , 360.); primGen->AddGenerator(urqmdGen); FairBoxGenerator* boxGen1 = new FairBoxGenerator(11, 5); boxGen1->SetPtRange(0.,3.); boxGen1->SetPhiRange(0.,360.); boxGen1->SetThetaRange(2.5,25.); boxGen1->SetCosTheta(); boxGen1->Init(); primGen->AddGenerator(boxGen1); FairBoxGenerator* boxGen2 = new FairBoxGenerator(-11, 5); boxGen2->SetPtRange(0.,3.);//4 boxGen2->SetPhiRange(0.,360.); boxGen2->SetThetaRange(2.5,25.);//35 boxGen2->SetCosTheta(); boxGen2->Init(); primGen->AddGenerator(boxGen2); run->SetGenerator(primGen); std::cout << std::endl << "-I- " << myName << ": Initialise run" << std::endl; //run->SetStoreTraj(kTRUE); run->Init(); // ----- Runtime database --------------------------------------------- std::cout << std::endl << std::endl; std::cout << "-I- " << myName << ": Set runtime DB" << std::endl; FairRuntimeDb* rtdb = run->GetRuntimeDb(); CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar"); fieldPar->SetParameters(magField); fieldPar->setChanged(); fieldPar->setInputVersion(run->GetRunId(),1); Bool_t kParameterMerged = kTRUE; FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged); parOut->open(parFile.Data()); rtdb->setOutput(parOut); rtdb->saveOutput(); rtdb->print(); std::cout << std::endl << std::endl << "-I- " << myName << ": Starting run" << std::endl; run->Run(nEvents); run->CreateGeometryFile(geoFile); timer.Stop(); Double_t rtime = timer.RealTime(); Double_t ctime = timer.CpuTime(); std::cout << std::endl << std::endl; std::cout << "Macro finished successfully." << std::endl; std::cout << "Output file is " << mcFile << std::endl; std::cout << "Parameter file is " << parFile << std::endl; std::cout << "Geometry file is " << geoFile << std::endl; std::cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << std::endl << std::endl; // ------------------------------------------------------------------------ // ----- Resource monitoring ------------------------------------------ // if ( Has_Fair_Monitor() ) { // FairRoot Version >= 15.11 // // Extract the maximal used memory an add is as Dart measurement // // This line is filtered by CTest and the value send to CDash // FairSystemInfo sysInfo; // Float_t maxMemory=sysInfo.GetMaxMemory(); // std::cout << ""; // std::cout << maxMemory; // std::cout << "" << std::endl; // // Float_t cpuUsage=ctime/rtime; // std::cout << ""; // std::cout << cpuUsage; // std::cout << "" << std::endl; // } std::cout << " Test passed" << std::endl; std::cout << " All ok " << std::endl; }