// -------------------------------------------------------------------------- // // Macro for standard transport simulation using UrQMD input and GEANT3 // // V. Friese 22/02/2007 // // Version 2018-06-09 // // For the setup (geometry and field), predefined setups can be chosen // by the second argument. Available setups are in geometry/setup. // The input file by the last argument. If none is specified, a default // input file distributed with the source code is selected. // // The output file will be named [output].tra.root. // A parameter file [output].par.root will be created. // The geometry (TGeoManager) will be written into [output].geo.root. // -------------------------------------------------------------------------- void c2f_transport(Int_t nEvents = 2, const char* setupName = "sis100_electron", const char* output = "test", const char* inputFile = "", const char* transportEngine = "TGeant4", bool randomEventPlane = false) { // ======================================================================== // Adjust this part according to your requirements // ----- Environment -------------------------------------------------- TString myName = "run_transport"; // this macro's name for screen output TString srcDir = gSystem->Getenv("VMCWORKDIR"); // top source directory // ------------------------------------------------------------------------ // ----- In- and output file names ------------------------------------ TString dataset(output); TString outFile = dataset + ".tra.root"; TString parFile = dataset + ".par.root"; TString geoFile = dataset + ".geo.root"; std::cout << std::endl; TString defaultInputFile = srcDir + "/input/urqmd.auau.10gev.centr.root"; TString inFile; if ( strcmp(inputFile, "") == 0 ) inFile = defaultInputFile; else inFile = inputFile; std::cout << "-I- " << myName << ": Using input file " << inFile << std::endl; // ------------------------------------------------------------------------ // --- Logger settings ---------------------------------------------------- TString logLevel = "INFO"; TString logVerbosity = "LOW"; // ------------------------------------------------------------------------ // --- Define the target geometry ----------------------------------------- // // The target is not part of the setup, since one and the same setup can // and will be used with different targets. // The target is constructed as a tube in z direction with the specified // diameter (in x and y) and thickness (in z). It will be placed at the // specified position as daughter volume of the volume present there. It is // in the responsibility of the user that no overlaps or extrusions are // created by the placement of the target. // TString targetElement = "Gold"; Double_t targetThickness = 0.025; // full thickness in cm Double_t targetDiameter = 2.5; // diameter in cm Double_t targetPosX = 0.; // target x position in global c.s. [cm] Double_t targetPosY = 0.; // target y position in global c.s. [cm] Double_t targetPosZ = 0.; // target z position in global c.s. [cm] Double_t targetRotY = 0.; // target rotation angle around the y axis [deg] // ------------------------------------------------------------------------ // --- Define the creation of the primary vertex ------------------------ // // By default, the primary vertex point is sampled from a Gaussian // distribution in both x and y with the specified beam profile width, // and from a flat distribution in z over the extension of the target. // By setting the respective flags to kFALSE, the primary vertex will always // at the (0., 0.) in x and y and in the z centre of the target, respectively. // Bool_t smearVertexXY = kTRUE; Bool_t smearVertexZ = kTRUE; Double_t beamWidthX = 0.1; // Gaussian sigma of the beam profile in x [cm] Double_t beamWidthY = 0.1; // Gaussian sigma of the beam profile in y [cm] // ------------------------------------------------------------------------ // In general, the following parts need not be touched // ======================================================================== // ----- Timer -------------------------------------------------------- TStopwatch timer; timer.Start(); // ------------------------------------------------------------------------ // ---- Debug option ------------------------------------------------- gDebug = 0; // ------------------------------------------------------------------------ // ----- Create simulation run ---------------------------------------- FairRunSim* run = new FairRunSim(); run->SetName(transportEngine); // Transport engine run->SetOutputFile(outFile); // Output file run->SetGenerateRunInfo(kTRUE); // Create FairRunInfo file // ------------------------------------------------------------------------ // ----- Logger settings ---------------------------------------------- FairLogger::GetLogger()->SetLogScreenLevel(logLevel.Data()); FairLogger::GetLogger()->SetLogVerbosityLevel(logVerbosity.Data()); // ------------------------------------------------------------------------ // ----- Load the geometry setup ------------------------------------- std::cout << std::endl; TString setupFile = srcDir + "/geometry/setup/setup_" + setupName + ".C"; TString setupFunct = "setup_"; setupFunct = setupFunct + setupName + "()"; std::cout << "-I- " << myName << ": Loading macro " << setupFile << std::endl; gROOT->LoadMacro(setupFile); gROOT->ProcessLine(setupFunct); // You can modify the pre-defined setup by using // CbmSetup::Instance()->RemoveModule(ESystemId) or // CbmSetup::Instance()->SetModule(ESystemId, const char*, Bool_t) or // CbmSetup::Instance()->SetActive(ESystemId, Bool_t) // See the class documentation of CbmSetup. // ------------------------------------------------------------------------ // ----- Create media ------------------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Setting media file" << std::endl; run->SetMaterials("media.geo"); // Materials // ------------------------------------------------------------------------ // ----- Create and register modules ---------------------------------- std::cout << std::endl; TString macroName = gSystem->Getenv("VMCWORKDIR"); macroName += "/macro/run/modules/registerSetup.C"; std::cout << "Loading macro " << macroName << std::endl; gROOT->LoadMacro(macroName); gROOT->ProcessLine("registerSetup()"); // ------------------------------------------------------------------------ // ----- Create and register the target ------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Registering target" << std::endl; CbmTarget* target = new CbmTarget(targetElement.Data(), targetThickness, targetDiameter); target->SetPosition(targetPosX, targetPosY, targetPosZ); target->SetRotation(targetRotY); std::cout << target->ToString() << std::endl; run->AddModule(target); // ------------------------------------------------------------------------ // ----- Create magnetic field ---------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Registering magnetic field" << std::endl; CbmFieldMap* magField = CbmSetup::Instance()->CreateFieldMap(); if ( ! magField ) { std::cout << "-E- run_sim_new: No valid field!"; return; } run->SetField(magField); // ------------------------------------------------------------------------ // ----- Create PrimaryGenerator -------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Registering event generators" << std::endl; FairPrimaryGenerator* primGen = new FairPrimaryGenerator(); // --- Uniform distribution of event plane angle if (randomEventPlane) { primGen->SetEventPlane(0., 2. * TMath::Pi()); } // --- Get target parameters TVector3 targetPos(0., 0., 0.); Double_t tDz = 0.; if ( target ) { targetPos = target->GetPosition(); tDz = target->GetThickness(); } primGen->SetTarget(targetPos.Z(), tDz); primGen->SetBeam(0., 0., beamWidthX, beamWidthY); primGen->SmearGausVertexXY(smearVertexXY); primGen->SmearVertexZ(smearVertexZ); // // TODO: Currently, there is no guaranteed consistency of the beam profile // and the transversal target dimension, i.e., that the sampled primary // vertex falls into the target volume. This would require changes // in the FairPrimaryGenerator class. // ------------------------------------------------------------------------ // Use the CbmUnigenGenrator for the input CbmUnigenGenerator* uniGen = new CbmUnigenGenerator(inFile); primGen->AddGenerator(uniGen); run->SetGenerator(primGen); // ------------------------------------------------------------------------ // ----- Run initialisation ------------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Initialise run" << std::endl; run->Init(); // ------------------------------------------------------------------------ // Allow to change the number of points needed such that the track is // saved // static_cast(TVirtualMC::GetMC()->GetStack())->SetMinPoints(1); // ----- Runtime database --------------------------------------------- std::cout << std::endl << std::endl; std::cout << "-I- " << myName << ": Set runtime DB" << std::endl; FairRuntimeDb* rtdb = run->GetRuntimeDb(); CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar"); fieldPar->SetParameters(magField); fieldPar->setChanged(); fieldPar->setInputVersion(run->GetRunId(),1); Bool_t kParameterMerged = kTRUE; FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged); parOut->open(parFile.Data()); rtdb->setOutput(parOut); rtdb->saveOutput(); rtdb->print(); // ------------------------------------------------------------------------ // ----- Start run ---------------------------------------------------- std::cout << std::endl << std::endl; std::cout << "-I- " << myName << ": Starting run" << std::endl; run->Run(nEvents); // ------------------------------------------------------------------------ // ----- Finish ------------------------------------------------------- run->CreateGeometryFile(geoFile); timer.Stop(); Double_t rtime = timer.RealTime(); Double_t ctime = timer.CpuTime(); std::cout << std::endl << std::endl; std::cout << "Macro finished successfully." << std::endl; std::cout << "Output file is " << outFile << std::endl; std::cout << "Parameter file is " << parFile << std::endl; std::cout << "Geometry file is " << geoFile << std::endl; std::cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << std::endl << std::endl; // ------------------------------------------------------------------------ // ----- Resource monitoring ------------------------------------------ if ( Has_Fair_Monitor() ) { // FairRoot Version >= 15.11 // Extract the maximal used memory an add is as Dart measurement // This line is filtered by CTest and the value send to CDash FairSystemInfo sysInfo; Float_t maxMemory=sysInfo.GetMaxMemory(); std::cout << ""; std::cout << maxMemory; std::cout << "" << std::endl; Float_t cpuUsage=ctime/rtime; std::cout << ""; std::cout << cpuUsage; std::cout << "" << std::endl; } std::cout << " Test passed" << std::endl; std::cout << " All ok " << std::endl; RemoveGeoManager(); // ------------------------------------------------------------------------ }