// --------------------------------------------------------------------------
//
// Macro for standard transport simulation using UrQMD input and GEANT3
//
// V. Friese 22/02/2007
//
// Version 2018-06-09
//
// For the setup (geometry and field), predefined setups can be chosen
// by the second argument. Available setups are in geometry/setup.
// The input file by the last argument. If none is specified, a default
// input file distributed with the source code is selected.
//
// The output file will be named [output].tra.root.
// A parameter file [output].par.root will be created.
// The geometry (TGeoManager) will be written into [output].geo.root.
// --------------------------------------------------------------------------
void dimuon_transport(Int_t nEvents = 2,
const char* setupName = "sis100_electron",
const char* output = "test",
const char* inputFile = "")
{
// ========================================================================
// Adjust this part according to your requirements
// ----- Environment --------------------------------------------------
TString myName = "run_transport"; // this macro's name for screen output
TString srcDir = gSystem->Getenv("VMCWORKDIR"); // top source directory
// ------------------------------------------------------------------------
// ----- In- and output file names ------------------------------------
TString dataset(output);
TString outFile = dataset + ".tra.root";
TString parFile = dataset + ".par.root";
TString geoFile = dataset + ".geo.root";
std::cout << std::endl;
TString defaultInputFile = srcDir + "/input/urqmd.auau.10gev.centr.root";
TString inFile;
if ( strcmp(inputFile, "") == 0 ) inFile = defaultInputFile;
else inFile = inputFile;
TString inputSignal = srcDir + "/macro/much/data/jpsi.root";
std::cout << "-I- " << myName << ": Using background input file " << inFile << std::endl;
std::cout << "-I- " << myName << ": Using signal input file " << inputSignal << std::endl;
// ------------------------------------------------------------------------
// --- Logger settings ----------------------------------------------------
TString logLevel = "INFO";
TString logVerbosity = "LOW";
// ------------------------------------------------------------------------
// --- Define the target geometry -----------------------------------------
//
// The target is not part of the setup, since one and the same setup can
// and will be used with different targets.
// The target is constructed as a tube in z direction with the specified
// diameter (in x and y) and thickness (in z). It will be placed at the
// specified position as daughter volume of the volume present there. It is
// in the responsibility of the user that no overlaps or extrusions are
// created by the placement of the target.
//
TString targetElement = "Gold";
Double_t targetThickness = 0.025; // full thickness in cm
Double_t targetDiameter = 2.5; // diameter in cm
Double_t targetPosX = 0.; // target x position in global c.s. [cm]
Double_t targetPosY = 0.; // target y position in global c.s. [cm]
Double_t targetPosZ = 0.; // target z position in global c.s. [cm]
Double_t targetRotY = 0.; // target rotation angle around the y axis [deg]
// ------------------------------------------------------------------------
// --- Define the creation of the primary vertex ------------------------
//
// By default, the primary vertex point is sampled from a Gaussian
// distribution in both x and y with the specified beam profile width,
// and from a flat distribution in z over the extension of the target.
// By setting the respective flags to kFALSE, the primary vertex will always
// at the (0., 0.) in x and y and in the z centre of the target, respectively.
//
Bool_t smearVertexXY = kTRUE;
Bool_t smearVertexZ = kTRUE;
Double_t beamWidthX = 0.1; // Gaussian sigma of the beam profile in x [cm]
Double_t beamWidthY = 0.1; // Gaussian sigma of the beam profile in y [cm]
// ------------------------------------------------------------------------
// In general, the following parts need not be touched
// ========================================================================
// ----- Timer --------------------------------------------------------
TStopwatch timer;
timer.Start();
// ------------------------------------------------------------------------
// ---- Debug option -------------------------------------------------
gDebug = 0;
// ------------------------------------------------------------------------
// ----- Create simulation run ----------------------------------------
FairRunSim* run = new FairRunSim();
run->SetName("TGeant3"); // Transport engine
run->SetOutputFile(outFile); // Output file
run->SetGenerateRunInfo(kTRUE); // Create FairRunInfo file
// ------------------------------------------------------------------------
// ----- Logger settings ----------------------------------------------
FairLogger::GetLogger()->SetLogScreenLevel(logLevel.Data());
FairLogger::GetLogger()->SetLogVerbosityLevel(logVerbosity.Data());
// ------------------------------------------------------------------------
// ----- Load the geometry setup -------------------------------------
std::cout << std::endl;
TString setupFile = srcDir + "/geometry/setup/setup_" + setupName + ".C";
TString setupFunct = "setup_";
setupFunct = setupFunct + setupName + "()";
std::cout << "-I- " << myName << ": Loading macro " << setupFile << std::endl;
gROOT->LoadMacro(setupFile);
gROOT->ProcessLine(setupFunct);
// You can modify the pre-defined setup by using
// CbmSetup::Instance()->RemoveModule(ESystemId) or
// CbmSetup::Instance()->SetModule(ESystemId, const char*, Bool_t) or
// CbmSetup::Instance()->SetActive(ESystemId, Bool_t)
// See the class documentation of CbmSetup.
// ------------------------------------------------------------------------
// ----- Create media -------------------------------------------------
std::cout << std::endl;
std::cout << "-I- " << myName << ": Setting media file" << std::endl;
run->SetMaterials("media.geo"); // Materials
// ------------------------------------------------------------------------
// ----- Create and register modules ----------------------------------
std::cout << std::endl;
TString macroName = gSystem->Getenv("VMCWORKDIR");
macroName += "/macro/run/modules/registerSetup.C";
std::cout << "Loading macro " << macroName << std::endl;
gROOT->LoadMacro(macroName);
gROOT->ProcessLine("registerSetup()");
// ------------------------------------------------------------------------
// ----- Create and register the target -------------------------------
std::cout << std::endl;
std::cout << "-I- " << myName << ": Registering target" << std::endl;
CbmTarget* target = new CbmTarget(targetElement.Data(),
targetThickness,
targetDiameter);
target->SetPosition(targetPosX, targetPosY, targetPosZ);
target->SetRotation(targetRotY);
std::cout << target->ToString() << std::endl;
run->AddModule(target);
// ------------------------------------------------------------------------
// ----- Create magnetic field ----------------------------------------
std::cout << std::endl;
std::cout << "-I- " << myName << ": Registering magnetic field" << std::endl;
CbmFieldMap* magField = CbmSetup::Instance()->CreateFieldMap();
if ( ! magField ) {
std::cout << "-E- run_sim_new: No valid field!";
return;
}
run->SetField(magField);
// ------------------------------------------------------------------------
// ----- Create PrimaryGenerator --------------------------------------
std::cout << std::endl;
std::cout << "-I- " << myName << ": Registering event generators" << std::endl;
FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
// --- Uniform distribution of event plane angle
primGen->SetEventPlane(0., 2. * TMath::Pi());
// --- Get target parameters
TVector3 targetPos(0., 0., 0.);
Double_t tDz = 0.;
if ( target ) {
targetPos = target->GetPosition();
tDz = target->GetThickness();
}
primGen->SetTarget(targetPos.Z(), tDz);
primGen->SetBeam(0., 0., beamWidthX, beamWidthY);
primGen->SmearGausVertexXY(smearVertexXY);
primGen->SmearVertexZ(smearVertexZ);
//
// TODO: Currently, there is no guaranteed consistency of the beam profile
// and the transversal target dimension, i.e., that the sampled primary
// vertex falls into the target volume. This would require changes
// in the FairPrimaryGenerator class.
// ------------------------------------------------------------------------
// Use the CbmUnigenGenrator for the background
CbmUnigenGenerator* uniGen = new CbmUnigenGenerator(inFile);
primGen->AddGenerator(uniGen);
// Use the CbmPlutoGenerator for the signal
CbmPlutoGenerator *plutoGen= new CbmPlutoGenerator(inputSignal);
primGen->AddGenerator(plutoGen);
run->SetGenerator(primGen);
// ------------------------------------------------------------------------
// ----- Run initialisation -------------------------------------------
std::cout << std::endl;
std::cout << "-I- " << myName << ": Initialise run" << std::endl;
run->Init();
// ------------------------------------------------------------------------
// ----- Runtime database ---------------------------------------------
std::cout << std::endl << std::endl;
std::cout << "-I- " << myName << ": Set runtime DB" << std::endl;
FairRuntimeDb* rtdb = run->GetRuntimeDb();
CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar");
fieldPar->SetParameters(magField);
fieldPar->setChanged();
fieldPar->setInputVersion(run->GetRunId(),1);
Bool_t kParameterMerged = kTRUE;
FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
parOut->open(parFile.Data());
rtdb->setOutput(parOut);
rtdb->saveOutput();
rtdb->print();
// ------------------------------------------------------------------------
// ----- Start run ----------------------------------------------------
std::cout << std::endl << std::endl;
std::cout << "-I- " << myName << ": Starting run" << std::endl;
run->Run(nEvents);
// ------------------------------------------------------------------------
// ----- Finish -------------------------------------------------------
run->CreateGeometryFile(geoFile);
timer.Stop();
Double_t rtime = timer.RealTime();
Double_t ctime = timer.CpuTime();
std::cout << std::endl << std::endl;
std::cout << "Macro finished successfully." << std::endl;
std::cout << "Output file is " << outFile << std::endl;
std::cout << "Parameter file is " << parFile << std::endl;
std::cout << "Geometry file is " << geoFile << std::endl;
std::cout << "Real time " << rtime << " s, CPU time " << ctime
<< "s" << std::endl << std::endl;
// ------------------------------------------------------------------------
// ----- Resource monitoring ------------------------------------------
if ( Has_Fair_Monitor() ) { // FairRoot Version >= 15.11
// Extract the maximal used memory an add is as Dart measurement
// This line is filtered by CTest and the value send to CDash
FairSystemInfo sysInfo;
Float_t maxMemory=sysInfo.GetMaxMemory();
std::cout << "";
std::cout << maxMemory;
std::cout << "" << std::endl;
Float_t cpuUsage=ctime/rtime;
std::cout << "";
std::cout << cpuUsage;
std::cout << "" << std::endl;
}
std::cout << " Test passed" << std::endl;
std::cout << " All ok " << std::endl;
RemoveGeoManager();
// ------------------------------------------------------------------------
}