// --------------------------------------------------------------------------
//
// Macro for standard transport simulation using UrQMD input and GEANT3
// Standard CBM setup with MVD, STS, RICH, TRD, TOF and ECAL
//
// V. Friese 22/02/2007
//
// 2017-03-30 - DE - add mcbm_sim.C to CTests
// 2014-06-30 - DE - available setups from geometry/setup:
// 2014-06-30 - DE - sis100_hadron
// 2014-06-30 - DE - sis100_electron
// 2014-06-30 - DE - sis100_muon
// 2014-06-30 - DE - sis300_electron
// 2014-06-30 - DE - sis300_muon
//
// --------------------------------------------------------------------------
TString caveGeom="";
TString pipeGeom="";
TString magnetGeom="";
TString mvdGeom="";
TString stsGeom="";
TString richGeom="";
TString muchGeom="";
TString shieldGeom="";
TString trdGeom="";
TString tofGeom="";
TString ecalGeom="";
TString platformGeom="";
TString psdGeom="";
Double_t psdZpos=0.;
Double_t psdXpos=0.;
TString mvdTag="";
TString stsTag="";
TString trdTag="";
TString tofTag="";
TString stsDigi="";
TString muchDigi="";
TString trdDigi="";
TString tofDigi="";
TString tofDigiBdf="";
TString mvdMatBudget="";
TString stsMatBudget="";
TString fieldMap="";
Double_t fieldZ=0.;
Double_t fieldScale=0.;
Int_t fieldSymType=0;
TString defaultInputFile="";
//void mcbm_sim(Int_t nEvents = 20, const char* setup = "sis18_mcbm")
void mcbm_sim(Int_t nEvents = 2, const char* setup = "sis18_mcbm")
{
// ========================================================================
// Adjust this part according to your requirements
// ----- Paths and file names --------------------------------------------
TString inDir = gSystem->Getenv("VMCWORKDIR");
TString outDir = "data/";
TString outFile = outDir + setup + "_test.mc.root";
TString parFile = outDir + setup + "_params.root";
TString geoFile = outDir + setup + "_geofile_full.root";
TString setupFile = inDir + "/geometry/setup/legacy/" + setup + "_setup.C";
TString setupFunct = setup;
setupFunct += "_setup()";
gROOT->LoadMacro(setupFile);
gInterpreter->ProcessLine(setupFunct);
TString inFile = inDir + defaultInputFile;
// Function needed for CTest runtime dependency
TString depFile = Remove_CTest_Dependency_File(outDir, "mcbm_sim" , setup);
// Bool_t hasFairMonitor = Has_Fair_Monitor();
// --- Logger settings ----------------------------------------------------
TString logLevel = "INFO"; // "DEBUG";
TString logVerbosity = "LOW";
// ------------------------------------------------------------------------
// --- Define the target geometry -----------------------------------------
//
// The target is not part of the setup, since one and the same setup can
// and will be used with different targets.
// The target is constructed as a tube in z direction with the specified
// diameter (in x and y) and thickness (in z). It will be placed at the
// specified position as daughter volume of the volume present there. It is
// in the responsibility of the user that no overlaps or extrusions are
// created by the placement of the target.
//
TString targetElement = "Gold";
Double_t targetThickness = 0.1; // full thickness in cm
Double_t targetDiameter = 0.5; // diameter in cm
Double_t targetPosX = 0.; // target x position in global c.s. [cm]
Double_t targetPosY = 0.; // target y position in global c.s. [cm]
Double_t targetPosZ = 0.; // target z position in global c.s. [cm]
Double_t targetRotY = 0.; // target rotation angle around the y axis [deg]
Double_t beamRotY = -20.; // beam rotation angle around the y axis [deg]
// ------------------------------------------------------------------------
// --- Define the creation of the primary vertex ------------------------
//
// By default, the primary vertex point is sampled from a Gaussian
// distribution in both x and y with the specified beam profile width,
// and from a flat distribution in z over the extension of the target.
// By setting the respective flags to kFALSE, the primary vertex will always
// at the (0., 0.) in x and y and in the z centre of the target, respectively.
//
Bool_t smearVertexXY = kTRUE;
Bool_t smearVertexZ = kTRUE;
Double_t beamWidthX = 0.1; // Gaussian sigma of the beam profile in x [cm]
Double_t beamWidthY = 0.1; // Gaussian sigma of the beam profile in y [cm]
// ------------------------------------------------------------------------
// In general, the following parts need not be touched
// ========================================================================
cout << "[INFO ] Setup: " << setup << endl;
// ---- Debug option -------------------------------------------------
gDebug = 0;
// ------------------------------------------------------------------------
// ----- Timer --------------------------------------------------------
TStopwatch timer;
timer.Start();
// ------------------------------------------------------------------------
// ----- Create simulation run ----------------------------------------
FairRunSim* run = new FairRunSim();
run->SetName("TGeant3"); // Transport engine
run->SetOutputFile(outFile); // Output file
run->SetGenerateRunInfo(kTRUE); // Create FairRunInfo file
FairRuntimeDb* rtdb = run->GetRuntimeDb();
// ------------------------------------------------------------------------
// ----- Logger settings ----------------------------------------------
gLogger->SetLogScreenLevel(logLevel.Data());
gLogger->SetLogVerbosityLevel(logVerbosity.Data());
// ------------------------------------------------------------------------
// ----- Create media -------------------------------------------------
run->SetMaterials("media.geo"); // Materials
// ------------------------------------------------------------------------
// ----- Create detectors and passive volumes -------------------------
if ( caveGeom != "" ) {
FairModule* cave = new CbmCave("CAVE");
cave->SetGeometryFileName(caveGeom);
run->AddModule(cave);
}
if ( pipeGeom != "" ) {
FairModule* pipe = new CbmPipe("PIPE");
pipe->SetGeometryFileName(pipeGeom);
run->AddModule(pipe);
}
// --- Target
CbmTarget* target = new CbmTarget(targetElement.Data(),
targetThickness,
targetDiameter);
target->SetPosition(targetPosX, targetPosY, targetPosZ);
// target->SetRotation(targetRotY);
run->AddModule(target);
if ( magnetGeom != "" ) {
FairModule* magnet = new CbmMagnet("MAGNET");
magnet->SetGeometryFileName(magnetGeom);
run->AddModule(magnet);
}
if ( platformGeom != "" ) {
FairModule* platform = new CbmPlatform("PLATFORM");
platform->SetGeometryFileName(platformGeom);
run->AddModule(platform);
}
if ( mvdGeom != "" ) {
FairDetector* mvd = new CbmMvd("MVD", kTRUE);
mvd->SetGeometryFileName(mvdGeom);
mvd->SetMotherVolume("pipevac1");
run->AddModule(mvd);
}
if ( stsGeom != "" ) {
FairDetector* sts = new CbmStsMC(kTRUE);
sts->SetGeometryFileName(stsGeom);
run->AddModule(sts);
}
if ( richGeom != "" ) {
FairDetector* rich = new CbmRich("RICH", kTRUE);
rich->SetGeometryFileName(richGeom);
run->AddModule(rich);
}
if ( muchGeom != "" ) {
FairDetector* much = new CbmMuch("MUCH", kTRUE);
much->SetGeometryFileName(muchGeom);
run->AddModule(much);
}
if ( shieldGeom != "" ) {
FairModule* shield = new CbmShield("SHIELD");
shield->SetGeometryFileName(shieldGeom);
run->AddModule(shield);
}
if ( trdGeom != "" ) {
FairDetector* trd = new CbmTrd("TRD",kTRUE );
trd->SetGeometryFileName(trdGeom);
run->AddModule(trd);
}
if ( tofGeom != "" ) {
FairDetector* tof = new CbmTof("TOF", kTRUE);
tof->SetGeometryFileName(tofGeom);
run->AddModule(tof);
}
if ( ecalGeom != "" ) {
FairDetector* ecal = new CbmEcal("ECAL", kTRUE, ecalGeom.Data());
run->AddModule(ecal);
}
if ( psdGeom != "" ) {
cout << "Constructing PSD" << endl;
CbmPsdv1* psd= new CbmPsdv1("PSD", kTRUE);
psd->SetZposition(psdZpos); // in cm
psd->SetXshift(psdXpos); // in cm
psd->SetGeoFile(psdGeom);
run->AddModule(psd);
}
// ------------------------------------------------------------------------
// ----- Create magnetic field ----------------------------------------
// CbmFieldMap* magField = NULL;
// if ( 2 == fieldSymType ) {
// magField = new CbmFieldMapSym2(fieldMap);
// } else if ( 3 == fieldSymType ) {
// magField = new CbmFieldMapSym3(fieldMap);
// }
// magField->SetPosition(0., 0., fieldZ);
// magField->SetScale(fieldScale);
FairConstField* magField = new FairConstField();
run->SetField(magField);
// ------------------------------------------------------------------------
// ----- Create PrimaryGenerator --------------------------------------
FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
// --- Uniform distribution of event plane angle
primGen->SetEventPlane(0., 2. * TMath::Pi());
// --- Get target parameters
Double_t tX = 0.;
Double_t tY = 0.;
Double_t tZ = 0.;
Double_t tDz = 0.;
if ( target ) {
target->GetPosition(tX, tY, tZ);
tDz = target->GetThickness();
}
primGen->SetTarget(tZ, tDz);
// primGen->SetTargetRotAngle(0., beamRotY * TMath::Pi()/180.);
primGen->SetBeam(0., 0., beamWidthX, beamWidthY);
primGen->SmearGausVertexXY(smearVertexXY);
primGen->SmearVertexZ(smearVertexZ);
//
// TODO: Currently, there is no guaranteed consistency of the beam profile
// and the transversal target dimension, i.e., that the sampled primary
// vertex falls into the target volume. This would require changes
// in the FairPrimaryGenerator class.
// ------------------------------------------------------------------------
// Use the CbmUnigenGenrator for the input
CbmUnigenGenerator* uniGen = new CbmUnigenGenerator(inFile);
uniGen->SetEventPlane(0. , 360.);
primGen->AddGenerator(uniGen);
primGen->SetBeamAngle(beamRotY * TMath::Pi()/180.,0,0,0); // set direction of beam to 30 degrees
run->SetGenerator(primGen);
// ------------------------------------------------------------------------
// // ----- Create Electron gun as alternative -----------------------------
// FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
// // Use the FairBoxGenerator which generates a soingle electron
// FairBoxGenerator *eminus = new FairBoxGenerator();
// eminus->SetPDGType(11);
// eminus->SetMultiplicity(1000);
// // eminus->SetBoxXYZ(32.,-32.,32.,-32.,0.); // shoot at corner of diagonal modules
// // eminus->SetBoxXYZ(0., 0., 0., 0., 0.); // shoot at corner of diagonal modules
// // eminus->SetBoxXYZ(57.,-57., 0., 0.,0.); // shoot at corner of diagonal modules
// // eminus->SetBoxXYZ(-57.,-57., 57., 57.,0.); // shoot at corner of diagonal modules
// eminus->SetBoxXYZ(-180.,-15.,-150.,15.,0.); // shoot at corner of diagonal modules
// eminus->SetPRange(2.,2.);
// eminus->SetPhiRange(0.,360.);
// eminus->SetThetaRange(0.,0.);
// primGen->AddGenerator(eminus);
//
// // primGen->SetBeamAngle(30*TMath::Pi()/180.,0,0,0); // set direction of beam to 30 degrees
//
// fRun->SetGenerator(primGen);
// // ------------------------------------------------------------------------
// Visualisation of trajectories (TGeoManager Only)
// Switch this on if you want to visualise tracks in the event display.
// This is normally switch off, because of the huge files created
// when it is switched on.
run->SetStoreTraj(kTRUE);
// ----- Run initialisation -------------------------------------------
run->Init();
// ------------------------------------------------------------------------
// // Set cuts for storing the trajectories.
// // Switch this on only if trajectories are stored.
// // Choose this cuts according to your needs, but be aware
// // that the file size of the output file depends on these cuts
//
// FairTrajFilter* trajFilter = FairTrajFilter::Instance();
// if ( trajFilter ) {
// trajFilter->SetStepSizeCut(0.01); // 1 cm
// trajFilter->SetVertexCut(-2000., -2000., 4., 2000., 2000., 100.);
// trajFilter->SetMomentumCutP(10e-3); // p_lab > 10 MeV
// trajFilter->SetEnergyCut(0., 1.02); // 0 < Etot < 1.04 GeV
// trajFilter->SetStorePrimaries(kTRUE);
// trajFilter->SetStoreSecondaries(kTRUE);
// }
// ----- Runtime database ---------------------------------------------
CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar");
fieldPar->SetParameters(magField);
fieldPar->setChanged();
fieldPar->setInputVersion(run->GetRunId(),1);
Bool_t kParameterMerged = kTRUE;
FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
parOut->open(parFile.Data());
rtdb->setOutput(parOut);
rtdb->saveOutput();
rtdb->print();
// ------------------------------------------------------------------------
// ----- Start run ----------------------------------------------------
run->Run(nEvents);
// ------------------------------------------------------------------------
run->CreateGeometryFile(geoFile);
// ----- Finish -------------------------------------------------------
timer.Stop();
Double_t rtime = timer.RealTime();
Double_t ctime = timer.CpuTime();
std::cout << std::endl << std::endl;
std::cout << "Macro finished successfully." << std::endl;
std::cout << "Output file is " << outFile << std::endl;
std::cout << "Parameter file is " << parFile << std::endl;
std::cout << "Real time " << rtime << " s, CPU time " << ctime
<< "s" << std::endl << std::endl;
// ------------------------------------------------------------------------
// if (hasFairMonitor) {
// // Extract the maximal used memory an add is as Dart measurement
// // This line is filtered by CTest and the value send to CDash
// FairSystemInfo sysInfo;
// Float_t maxMemory=sysInfo.GetMaxMemory();
// cout << "";
// cout << maxMemory;
// cout << "" << endl;
//
// Float_t cpuUsage=ctime/rtime;
// cout << "";
// cout << cpuUsage;
// cout << "" << endl;
// }
std::cout << " Test passed" << std::endl;
std::cout << " All ok " << std::endl;
// Function needed for CTest runtime dependency
Generate_CTest_Dependency_File(depFile);
RemoveGeoManager();
}