// -------------------------------------------------------------------------- // // Macro for transport simulation for the sake of collective flow studies, using UrQMD or SHIELD input and GEANT4 // CBM setup with (MVD,) STS, (RICH, TRD, TOF and ECAL), PSD (detector in brackets not included by default) // // 3 output files, with: 1) transported events 2) run parameters 3) PSD module XY coordinates in LAB (target) system (ASCII) // // Selim, 22/10/14 // // -------------------------------------------------------------------------- // TO CHECK in the code: IMPORTANT NOTE void run_sim_flow(Int_t nEvents = 2, Int_t En=25, const char* setupName = "sis300_electron_flow", const char* inputFile ="") { // The energy is needed in the setup file to define the field scale // and the psd position TString energy = Form("%i", En); gSystem->Setenv("BEAM_ENERGY",energy); // ======================================================================== // Adjust this part according to your requirements // ----- Environment -------------------------------------------------- TString myName = "run_sim"; // this macro's name for screen output TString srcDir = gSystem->Getenv("VMCWORKDIR"); // top source directory // ------------------------------------------------------------------------ // ----- In- and output file names ------------------------------------ TString inFile = ""; // give here or as argument; otherwise default is taken TString outDir = "data/"; TString outFile = outDir + setupName + "_mc_evt.root"; TString parFile = outDir + setupName + "_params_evt.root"; TString geoFile = outDir + setupName + "_geofile_full_evt.root"; // ------------------------------------------------------------------------ // --- Logger settings ---------------------------------------------------- TString logLevel = "INFO"; TString logVerbosity = "LOW"; // ------------------------------------------------------------------------ // --- Define the target geometry ----------------------------------------- // // The target is not part of the setup, since one and the same setup can // and will be used with different targets. // The target is constructed as a tube in z direction with the specified // diameter (in x and y) and thickness (in z). It will be placed at the // specified position as daughter volume of the volume present there. It is // in the responsibility of the user that no overlaps or extrusions are // created by the placement of the target. // TString targetElement = "Gold"; Double_t targetThickness = 0.025; // full thickness in cm Double_t targetDiameter = 2.5; // diameter in cm Double_t targetPosX = 0.; // target x position in global c.s. [cm] Double_t targetPosY = 0.; // target y position in global c.s. [cm] Double_t targetPosZ = 0.; // target z position in global c.s. [cm] Double_t targetRotY = 0.; // target rotation angle around the y axis [deg] // ------------------------------------------------------------------------ // --- Define the creation of the primary vertex ------------------------ // // By default, the primary vertex point is sampled from a Gaussian // distribution in both x and y with the specified beam profile width, // and from a flat distribution in z over the extension of the target. // By setting the respective flags to kFALSE, the primary vertex will always // at the (0., 0.) in x and y and in the z centre of the target, respectively. // Bool_t smearVertexXY = kTRUE; Bool_t smearVertexZ = kTRUE; Double_t beamWidthX = 1.; // Gaussian sigma of the beam profile in x [cm] Double_t beamWidthY = 1.; // Gaussian sigma of the beam profile in y [cm] // ------------------------------------------------------------------------ // In general, the following parts need not be touched // ======================================================================== // if kbeam==kTRUE, transport the beam for estimating required PSD x-shift // if kbeam==kFALSE, transport particles from input models, // gen=0 : UrQMD bool kbeam = kFALSE; Int_t gen = 0; // ----- Timer -------------------------------------------------------- TStopwatch timer; timer.Start(); // ------------------------------------------------------------------------ // ---- Debug option ------------------------------------------------- gDebug = 0; // ------------------------------------------------------------------------ // ----- Remove old CTest runtime dependency file --------------------- TString depFile = Remove_CTest_Dependency_File(outDir, "run_sim" , setupName); // ------------------------------------------------------------------------ // ----- Create simulation run ---------------------------------------- FairRunSim* run = new FairRunSim(); run->SetName("TGeant4"); // Transport engine // IMPORTANT NOTE: need G4 for hadronic calorimetry in PSD including projectile fragments (produced in SHIELD) // IMPORTANT NOTE: change physics list (in gconfig/g4Config.C) to either FTFP_BERT or QGSP_BIC_HP (both tested) run->SetOutputFile(outFile); // Output file run->SetGenerateRunInfo(kTRUE); // Create FairRunInfo file // ------------------------------------------------------------------------ // ----- Logger settings ---------------------------------------------- FairLogger::GetLogger()->SetLogScreenLevel(logLevel.Data()); FairLogger::GetLogger()->SetLogVerbosityLevel(logVerbosity.Data()); // ------------------------------------------------------------------------ // ----- Load the geometry setup ------------------------------------- std::cout << std::endl; TString setupFile = srcDir + "/geometry/setup/setup_" + setupName + ".C"; TString setupFunct = "setup_"; setupFunct = setupFunct + setupName + "()"; std::cout << "-I- " << myName << ": Loading macro " << setupFile << std::endl; gROOT->LoadMacro(setupFile); gROOT->ProcessLine(setupFunct); // ------------------------------------------------------------------------ // ----- Input file --------------------------------------------------- std::cout << std::endl; TString defaultInputFile = srcDir + "/input/urqmd.auau.25gev.centr.root"; if ( inFile.IsNull() ) { // Not defined in the macro explicitly if ( strcmp(inputFile, "") == 0 ) { // not given as argument to the macro inFile = defaultInputFile; } else inFile = inputFile; } std::cout << "-I- " << myName << ": Using input file " << inFile << std::endl; // ------------------------------------------------------------------------ // ----- Create media ------------------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Setting media file" << std::endl; run->SetMaterials("media.geo"); // Materials // ------------------------------------------------------------------------ // ----- Create and register modules ---------------------------------- std::cout << std::endl; TString macroName = gSystem->Getenv("VMCWORKDIR"); macroName += "/macro/run/modules/registerSetup.C"; std::cout << "Loading macro " << macroName << std::endl; gROOT->LoadMacro(macroName); gROOT->ProcessLine("registerSetup()"); // ------------------------------------------------------------------------ // ----- Create and register the target ------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Registering target" << std::endl; CbmTarget* target = new CbmTarget(targetElement.Data(), targetThickness, targetDiameter); target->SetPosition(targetPosX, targetPosY, targetPosZ); target->SetRotation(targetRotY); target->Print(); run->AddModule(target); // ------------------------------------------------------------------------ // ----- Create magnetic field ---------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Registering magnetic field" << std::endl; CbmFieldMap* magField = CbmSetup::Instance()->CreateFieldMap(); if ( ! magField ) { std::cout << "-E- run_sim_new: No valid field!"; return; } run->SetField(magField); // ------------------------------------------------------------------------ /* CbmPsdv1_44mods_hole6cm* psd= new CbmPsdv1_44mods_hole6cm("PSD", kTRUE); // ========= Acceptance PSD & FD method //CbmPsdWoutv1_for44mods_full_holes* psd= new CbmPsdWoutv1_for44mods_full_holes("PSD", kTRUE); //CbmPsdWoutv1_for44mods_sub1* psd= new CbmPsdWoutv1_for44mods_sub1("PSD", kTRUE); psd->SetZposition(psdZpos); // in cm psd->SetXshift(psdXshift); // in cm TString geoFileNamePsd = outDir + "psd_geo_xy_" + numEvt + "evt.txt"; psd->SetGeoFile(geoFileNamePsd); fRun->AddModule(psd); */ // ------------------------------------------------------------------------ // ----- Create PrimaryGenerator -------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Registering event generators" << std::endl; FairPrimaryGenerator* primGen = new FairPrimaryGenerator(); // --- Uniform distribution of event plane angle primGen->SetEventPlane(-TMath::Pi(), TMath::Pi()); // --- Get target parameters Double_t tX = 0.; Double_t tY = 0.; Double_t tZ = 0.; Double_t tDz = 0.; if ( target ) { target->GetPosition(tX, tY, tZ); tDz = target->GetThickness(); } primGen->SetTarget(tZ, tDz); primGen->SetBeam(0., 0., beamWidthX, beamWidthY); primGen->SmearGausVertexXY(smearVertexXY); primGen->SmearVertexZ(smearVertexZ); // Include beam emittance //primGen->SmearVertexZ(kTRUE); //primGen->SmearVertexXY(kTRUE); //primGen->SetBeam(0., 0., 0.15, 0.06, 2.2e-3, 2e-3); // emittance (SIS100) @ 10 AGeV ~ 2.2 mm.mrad (X) -> deltaX = +/- 1 mm && thetaX = +/- 2.2 mrad // // TODO: Currently, there is no guaranteed consistency of the beam profile // and the transversal target dimension, i.e., that the sampled primary // vertex falls into the target volume. This would require changes // in the FairPrimaryGenerator class. // ------------------------------------------------------------------------ if (kbeam == kFALSE) { CbmUnigenGenerator* urqmdGen = new CbmUnigenGenerator(inFile); // IMPORTANT NOTE: event plane angle in [-pi, pi] by convention // rotation is done in FairPrimaryGenerator primGen->AddGenerator(urqmdGen); } else { Double_t bMom; if (En == 35) bMom = 35.926; if (En == 25) bMom = 25.92; if (En == 15) bMom = 15.91; if (En == 10) bMom = 10.898; if (En == 8) bMom = 8.88889; if (En == 6) bMom = 6.87454; if (En == 4) bMom = 4.84832; if (En == 2) bMom = 2.78444; int Nion; int pileup = 100; Nion = nEvents*pileup; FairIonGenerator *fIongen= new FairIonGenerator(79, 197, 79, Nion, 0., 0., bMom, 0., 0., -1.); primGen->AddGenerator(fIongen); nEvents = 1; } run->SetGenerator(primGen); // ------------------------------------------------------------------------ // -Trajectories Visualization (TGeoManager Only ) // Switch this on if you want to visualize tracks in the // eventdisplay. // This is normally switch off, because of the huge files created // when it is switched on. // run->SetStoreTraj(kTRUE); // ----- Run initialisation ------------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Initialise run" << std::endl; run->Init(); // ------------------------------------------------------------------------ // Set cuts for storing the trajectories. // Switch this on only if trajectories are stored. // Choose this cuts according to your needs, but be aware // that the file size of the output file depends on these cuts // FairTrajFilter* trajFilter = FairTrajFilter::Instance(); // trajFilter->SetStepSizeCut(0.01); // 1 cm // trajFilter->SetVertexCut(-2000., -2000., 4., 2000., 2000., 100.); // trajFilter->SetMomentumCutP(10e-3); // p_lab > 10 MeV // trajFilter->SetEnergyCut(0., 1.02); // 0 < Etot < 1.04 GeV // trajFilter->SetStorePrimaries(kTRUE); // trajFilter->SetStoreSecondaries(kTRUE); CbmStack* stack = (CbmStack*) FairMCApplication::Instance()->GetStack(); //stack->SetMinPoints(0); //stack->StoreSecondaries(kFALSE); // ----- Runtime database --------------------------------------------- std::cout << std::endl << std::endl; std::cout << "-I- " << myName << ": Set runtime DB" << std::endl; FairRuntimeDb* rtdb = run->GetRuntimeDb(); CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar"); fieldPar->SetParameters(magField); fieldPar->setChanged(); fieldPar->setInputVersion(run->GetRunId(),1); Bool_t kParameterMerged = kTRUE; FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged); parOut->open(parFile.Data()); rtdb->setOutput(parOut); rtdb->saveOutput(); rtdb->print(); // ------------------------------------------------------------------------ // ----- Start run ---------------------------------------------------- std::cout << std::endl << std::endl; std::cout << "-I- " << myName << ": Starting run" << std::endl; run->Run(nEvents); // ------------------------------------------------------------------------ // ----- Finish ------------------------------------------------------- run->CreateGeometryFile(geoFile); timer.Stop(); Double_t rtime = timer.RealTime(); Double_t ctime = timer.CpuTime(); std::cout << std::endl << std::endl; std::cout << "Macro finished successfully." << std::endl; std::cout << "Output file is " << outFile << std::endl; std::cout << "Parameter file is " << parFile << std::endl; std::cout << "Geometry file is " << geoFile << std::endl; std::cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << std::endl << std::endl; // ------------------------------------------------------------------------ // ----- Resource monitoring ------------------------------------------ if ( Has_Fair_Monitor() ) { // FairRoot Version >= 15.11 // Extract the maximal used memory an add is as Dart measurement // This line is filtered by CTest and the value send to CDash FairSystemInfo sysInfo; Float_t maxMemory=sysInfo.GetMaxMemory(); std::cout << ""; std::cout << maxMemory; std::cout << "" << std::endl; Float_t cpuUsage=ctime/rtime; std::cout << ""; std::cout << cpuUsage; std::cout << "" << std::endl; } std::cout << " Test passed" << std::endl; std::cout << " All ok " << std::endl; // Function needed for CTest runtime dependency Generate_CTest_Dependency_File(depFile); // ------------------------------------------------------------------------ }