/// /// \file Create_TOF_Geometry_v18k_mCbm.C /// \brief Generates TOF geometry in Root format. /// // Changelog // // 2017-11-03 - v18i - DE - shift mTOF to z=298 cm for acceptance matching with mSTS // 2017-10-06 - v18h - DE - put v18f into vertical position to fit into the mCBM cave // 2017-07-15 - v18g - DE - swap the z-position of TOF modules: 2 in the front, 3 in the back // 2017-07-14 - v18f - DE - reduce vertical gap between TOF modules to fix the gap between modules 1-2 and 4-5 // 2017-05-17 - v18e - DE - rotate electronics away from beam, shift 16 cm away from beam along x-axis // 2017-05-17 - v18d - DE - change geometry name to v18d // in root all sizes are given in cm #include "TSystem.h" #include "TGeoManager.h" #include "TGeoVolume.h" #include "TGeoMaterial.h" #include "TGeoMedium.h" #include "TGeoPgon.h" #include "TGeoMatrix.h" #include "TGeoCompositeShape.h" #include "TFile.h" #include "TString.h" #include "TList.h" #include "TROOT.h" #include "TMath.h" #include // Name of geometry version and output file const TString geoVersion = "tof_v18l"; // do not change // const TString fileTag = "tof_v18l"; const TString FileNameSim = fileTag + "_mCbm.root"; const TString FileNameGeo = fileTag + "_mCbm.geo.root"; const TString FileNameInfo = fileTag + "_mCbm.info"; // TOF_Z_Front corresponds to front cover of outer super module towers const Float_t TOF_Z_Front = 203; // = z=298 mCBM@SIS18 //const Float_t TOF_Z_Front = 130; // = z=225 mCBM@SIS18 //const Float_t TOF_Z_Front = 250; // SIS 100 hadron //const Float_t TOF_Z_Front = 450; // SIS 100 hadron //const Float_t TOF_Z_Front = 600; // SIS 100 electron //const Float_t TOF_Z_Front = 650; // SIS 100 muon //const Float_t TOF_Z_Front = 880; // SIS 300 electron //const Float_t TOF_Z_Front = 1020; // SIS 300 muon // //const Float_t TOF_Z_Front = 951.5; // Wall_Z_Position = 1050 cm // Names of the different used materials which are used to build the modules // The materials are defined in the global media.geo file const TString KeepingVolumeMedium = "air"; const TString BoxVolumeMedium = "aluminium"; const TString NoActivGasMedium = "RPCgas_noact"; const TString ActivGasMedium = "RPCgas"; const TString GlasMedium = "RPCglass"; const TString ElectronicsMedium = "carbon"; // Counters: // 0 MRPC3a // 1 MRPC3b // 2 // 3 // 4 Diamond // 5 Buc 2019 // 6 Buc 2019 // 7 CERN 20gap // 8 Ceramic Pad const Int_t NumberOfDifferentCounterTypes = 9; const Float_t Glass_X[NumberOfDifferentCounterTypes] = {32. , 52., 32., 32., 0.2, 32., 32., 20., 2.4}; const Float_t Glass_Y[NumberOfDifferentCounterTypes] = {26.9, 53., 20., 10., 0.2, 10., 5., 20., 2.4}; const Float_t Glass_Z[NumberOfDifferentCounterTypes] = {0.1, 0.1,0.1, 0.1,0.01 ,0.1,0.1, 0.1, 0.1}; const Float_t GasGap_X[NumberOfDifferentCounterTypes] = {32. , 52., 32., 32., 0.2, 32., 32., 20., 2.4}; const Float_t GasGap_Y[NumberOfDifferentCounterTypes] = {26.9, 53., 20., 10., 0.2, 10., 5., 20., 2.4}; const Float_t GasGap_Z[NumberOfDifferentCounterTypes] = {0.025,0.025,0.025,0.025,0.01,0.02,0.02,0.02,0.025}; const Int_t NumberOfGaps[NumberOfDifferentCounterTypes] = {8,8,8,8,1,8,8,20,4}; //const Int_t NumberOfGaps[NumberOfDifferentCounterTypes] = {1,1,1,1}; //deb const Int_t NumberOfReadoutStrips[NumberOfDifferentCounterTypes] = {32,32,32,32,80,32,32,18,1}; //const Int_t NumberOfReadoutStrips[NumberOfDifferentCounterTypes] = {1,1,1,1}; //deb const Float_t SingleStackStartPosition_Z[NumberOfDifferentCounterTypes] = {-0.6,-0.6,-0.6,-0.6,-0.1,-0.6,-0.6,-0.6,-1.}; const Float_t Electronics_X[NumberOfDifferentCounterTypes] = {34.0,53.0,32.0,32.,0.3,0.1,0.1,0.1,0.1}; const Float_t Electronics_Y[NumberOfDifferentCounterTypes] = { 5.0, 5.0, 1.0, 1.,0.1,0.1,0.1,0.1,0.1}; const Float_t Electronics_Z[NumberOfDifferentCounterTypes] = { 0.3, 0.3, 0.3, 0.3,0.1,0.1,0.1,0.1,0.1}; const Int_t NofModuleTypes = 10; // 5 Diamond // 6 Buc // 7 CERN 20 gap // 8 Ceramic // 9 Star2 // Aluminum box for all module types const Float_t Module_Size_X[NofModuleTypes] = {180.,180.,180.,180.,180.,5., 50., 40., 22.5, 100.}; const Float_t Module_Size_Y[NofModuleTypes] = { 49., 49., 74., 28., 18., 5., 50., 40., 11., 49.}; const Float_t Module_Over_Y[NofModuleTypes] = {11.5,11.5,11., 4.5, 4.5, 0., 0., 0., 0., 0.}; const Float_t Module_Size_Z[NofModuleTypes] = {11., 11., 13., 11., 11., 1., 20., 10., 6.2, 11.2}; const Float_t Module_Thick_Alu_X_left = 0.1; const Float_t Module_Thick_Alu_X_right = 1.0; const Float_t Module_Thick_Alu_Y = 0.1; const Float_t Module_Thick_Alu_Z = 0.1; // Distance to the center of the TOF wall [cm]; const Float_t Wall_Z_Position = 400.; const Float_t MeanTheta = 0.; //Type of Counter for module const Int_t CounterTypeInModule[NofModuleTypes] = {0, 0, 1, 2, 3, 4, 5, 7, 8, 0}; const Int_t NCounterInModule[NofModuleTypes] = {5, 5, 3, 5, 5, 1, 1, 1, 8, 2}; // Placement of the counter inside the module const Float_t CounterXStartPosition[NofModuleTypes] = {-60.0, -66.0, -56.0,-60.0,-60.0, 0.0, 0., 0., -7., 0.}; const Float_t CounterXDistance[NofModuleTypes] = {30.0, 32.0, 51.0, 30.0, 30.0, 0.0, 0., 0., 2., 0.}; const Float_t CounterYStartPosition[NofModuleTypes] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0., 0., -4., -1.3, 0.}; const Float_t CounterYDistance[NofModuleTypes] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0., 0., 8., 0., 0.}; const Float_t CounterZDistance[NofModuleTypes] = {-2.5, 0.0, 0.0, 2.5, 2.5, 0., 0., 0., 0.1, 4.}; const Float_t CounterZStartPosition[NofModuleTypes] = {0.0, 0.0, 0.0, 0.0, 0.0, 0., 0., 0., 0.0, -2.}; const Float_t CounterRotationAngle[NofModuleTypes] = {0., 8.7, 7.0, 0., 0., 0., 0., 0., 0., 0.}; // Pole (support structure) const Int_t MaxNumberOfPoles=20; Float_t Pole_ZPos[MaxNumberOfPoles]; Float_t Pole_Col[MaxNumberOfPoles]; Int_t NumberOfPoles=0; const Float_t Pole_Size_X = 20.; const Float_t Pole_Size_Y = 300.; const Float_t Pole_Size_Z = 10.; const Float_t Pole_Thick_X = 5.; const Float_t Pole_Thick_Y = 5.; const Float_t Pole_Thick_Z = 5.; // Bars (support structure) const Float_t Bar_Size_X = 20.; const Float_t Bar_Size_Y = 20.; Float_t Bar_Size_Z = 100.; const Int_t MaxNumberOfBars=20; Float_t Bar_ZPos[MaxNumberOfBars]; Float_t Bar_XPos[MaxNumberOfBars]; Int_t NumberOfBars=0; const Float_t ChamberOverlap=40; const Float_t DxColl=158.0; //Module_Size_X-ChamberOverlap; //const Float_t Pole_Offset=Module_Size_X/2.+Pole_Size_X/2.; const Float_t Pole_Offset=90.0+Pole_Size_X/2.; // Position for module placement const Float_t Inner_Module_First_Y_Position=16.; const Float_t Inner_Module_Last_Y_Position=480.; const Float_t Inner_Module_X_Offset=0.; // centered position in x/y //const Float_t Inner_Module_X_Offset=18; // shift by 16 cm in x const Int_t Inner_Module_NTypes = 3; const Float_t Inner_Module_Types[Inner_Module_NTypes] = {4.,3.,0.}; //const Float_t Inner_Module_Number[Inner_Module_NTypes] = {2.,2.,6.}; //V13_3a const Float_t Inner_Module_Number[Inner_Module_NTypes] = {2.,2.,1.}; //V13_3a //const Float_t Inner_Module_Number[Inner_Module_NTypes] = {0.,0.,0.}; //debugging const Float_t InnerSide_Module_X_Offset=51.; const Float_t InnerSide_Module_NTypes = 1; const Float_t InnerSide_Module_Types[Inner_Module_NTypes] = {5.}; const Float_t InnerSide_Module_Number[Inner_Module_NTypes] = {2.}; //v13_3a //const Float_t InnerSide_Module_Number[Inner_Module_NTypes] = {0.}; //debug const Float_t Outer_Module_First_Y_Position=0.; const Float_t Outer_Module_Last_Y_Position=480.; const Float_t Outer_Module_X_Offset=3.; const Int_t Outer_Module_Col = 4; const Int_t Outer_Module_NTypes = 2; const Float_t Outer_Module_Types [Outer_Module_NTypes][Outer_Module_Col] = {1.,1.,1.,1., 2.,2.,2.,2.}; const Float_t Outer_Module_Number[Outer_Module_NTypes][Outer_Module_Col] = {9.,9.,2.,0., 0.,0.,3.,4.};//V13_3a //const Float_t Outer_Module_Number[Outer_Module_NTypes][Outer_Module_Col] = {1.,1.,0.,0., 0.,0.,0.,0.};//debug const Float_t Star2_First_Z_Position=TOF_Z_Front + 34.; const Float_t Star2_Delta_Z_Position=0.; const Float_t Star2_First_Y_Position=40.; // const Float_t Star2_Delta_Y_Position=0.; // const Float_t Star2_rotate_Z=-90.; const Int_t Star2_NTypes = 1; const Float_t Star2_Types[Star2_NTypes] = {9.}; const Float_t Star2_Number[Star2_NTypes] = {1.}; //debugging, V16b const Float_t Star2_X_Offset[Star2_NTypes]={50.}; const Int_t Cer_NTypes = 3; const Float_t Cer_Z_Position[Cer_NTypes]={(float)(TOF_Z_Front+13.2),(float)(TOF_Z_Front+35.),(float)(TOF_Z_Front+35.)}; const Float_t Cer_X_Position[Cer_NTypes]={0.,50.,50.}; const Float_t Cer_Y_Position[Cer_NTypes]={-1.,-24.,-20.}; const Float_t Cer_rotate_Z[Cer_NTypes]={0.,0.,0.}; const Float_t Cer_Types[Cer_NTypes] = {5.,8.,8.}; const Float_t Cer_Number[Cer_NTypes] = {1.,1.,1.}; //V16b const Float_t CERN_Z_Position=TOF_Z_Front+50; // 20 gap const Float_t CERN_First_Y_Position=0.; const Float_t CERN_X_Offset=50.5; const Float_t CERN_rotate_Z=180.; const Int_t CERN_NTypes = 1; const Float_t CERN_Types[CERN_NTypes] = {7.}; // this is the SmType! const Float_t CERN_Number[CERN_NTypes] = {1.}; // evtl. double for split signals // some global variables TGeoManager* gGeoMan = NULL; // Pointer to TGeoManager instance TGeoVolume* gModules[NofModuleTypes]; // Global storage for module types TGeoVolume* gCounter[NumberOfDifferentCounterTypes]; TGeoVolume* gPole; TGeoVolume* gBar[MaxNumberOfBars]; const Float_t Dia_Z_Position=-2.; const Float_t Dia_First_Y_Position=0.; const Float_t Dia_X_Offset=0.; const Float_t Dia_rotate_Z=0.; const Int_t Dia_NTypes = 1; const Float_t Dia_Types[Dia_NTypes] = {5.}; const Float_t Dia_Number[Dia_NTypes] = {1.}; Float_t Last_Size_Y=0.; Float_t Last_Over_Y=0.; // Forward declarations void create_materials_from_media_file(); TGeoVolume* create_counter(Int_t); TGeoVolume* create_new_counter(Int_t); TGeoVolume* create_tof_module(Int_t); TGeoVolume* create_new_tof_module(Int_t); TGeoVolume* create_tof_pole(); TGeoVolume* create_tof_bar(); void position_tof_poles(Int_t); void position_tof_bars(Int_t); void position_inner_tof_modules(Int_t); void position_side_tof_modules(Int_t); void position_outer_tof_modules(Int_t); void position_Dia(Int_t); void position_Star2(Int_t); void position_cer_modules(Int_t); void position_CERN(Int_t); void dump_info_file(); void Create_TOF_Geometry_v18l_mCbm() { // Load the necessary FairRoot libraries // gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C"); // basiclibs(); // gSystem->Load("libGeoBase"); // gSystem->Load("libParBase"); // gSystem->Load("libBase"); // Load needed material definition from media.geo file create_materials_from_media_file(); // Get the GeoManager for later usage gGeoMan = (TGeoManager*) gROOT->FindObject("FAIRGeom"); gGeoMan->SetVisLevel(5); // 2 = super modules gGeoMan->SetVisOption(0); // Create the top volume /* TGeoBBox* topbox= new TGeoBBox("", 1000., 1000., 1000.); TGeoVolume* top = new TGeoVolume("top", topbox, gGeoMan->GetMedium("air")); gGeoMan->SetTopVolume(top); */ TGeoVolume* top = new TGeoVolumeAssembly("TOP"); gGeoMan->SetTopVolume(top); TGeoRotation* tof_rotation = new TGeoRotation(); tof_rotation->RotateY( 0. ); // stand not pointing to target //tof_rotation->RotateZ( 0 ); // electronics on 9 o'clock position = +x // tof_rotation->RotateZ( 0 ); // electronics on 9 o'clock position = +x // tof_rotation->RotateZ( 90 ); // electronics on 12 o'clock position (top) // tof_rotation->RotateZ( 180 ); // electronics on 3 o'clock position = -x // tof_rotation->RotateZ( 270 ); // electronics on 6 o'clock position (bottom) TGeoVolume* tof = new TGeoVolumeAssembly(geoVersion); top->AddNode(tof, 1, tof_rotation); for(Int_t counterType = 0; counterType < NumberOfDifferentCounterTypes; counterType++) { gCounter[counterType] = create_new_counter(counterType); } for(Int_t moduleType = 0; moduleType < NofModuleTypes; moduleType++) { gModules[moduleType] = create_new_tof_module(moduleType); gModules[moduleType]->SetVisContainers(1); } // no pole // gPole = create_tof_pole(); // position_side_tof_modules(1); // keep order !! // position_inner_tof_modules(2); position_inner_tof_modules(3); position_Dia(1); position_Star2(1); position_cer_modules(3); position_CERN(1); cout << "Outer Types "<CloseGeometry(); gGeoMan->CheckOverlaps(0.001); gGeoMan->PrintOverlaps(); gGeoMan->Test(); TFile* outfile1 = new TFile(FileNameSim,"RECREATE"); top->Write(); //gGeoMan->Write(); outfile1->Close(); TFile* outfile2 = new TFile(FileNameGeo,"RECREATE"); gGeoMan->Write(); outfile2->Close(); dump_info_file(); top->SetVisContainers(1); gGeoMan->SetVisLevel(5); top->Draw("ogl"); //top->Draw(); //gModules[0]->Draw("ogl"); // gModules[0]->Draw(""); gModules[0]->SetVisContainers(1); // gModules[1]->Draw(""); gModules[1]->SetVisContainers(1); //gModules[5]->Draw(""); // top->Raytrace(); } void create_materials_from_media_file() { // Use the FairRoot geometry interface to load the media which are already defined FairGeoLoader* geoLoad = new FairGeoLoader("TGeo", "FairGeoLoader"); FairGeoInterface* geoFace = geoLoad->getGeoInterface(); TString geoPath = gSystem->Getenv("VMCWORKDIR"); TString geoFile = geoPath + "/geometry/media.geo"; geoFace->setMediaFile(geoFile); geoFace->readMedia(); // Read the required media and create them in the GeoManager FairGeoMedia* geoMedia = geoFace->getMedia(); FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder(); FairGeoMedium* air = geoMedia->getMedium("air"); FairGeoMedium* aluminium = geoMedia->getMedium("aluminium"); FairGeoMedium* RPCgas = geoMedia->getMedium("RPCgas"); FairGeoMedium* RPCgas_noact = geoMedia->getMedium("RPCgas_noact"); FairGeoMedium* RPCglass = geoMedia->getMedium("RPCglass"); FairGeoMedium* carbon = geoMedia->getMedium("carbon"); // include check if all media are found geoBuild->createMedium(air); geoBuild->createMedium(aluminium); geoBuild->createMedium(RPCgas); geoBuild->createMedium(RPCgas_noact); geoBuild->createMedium(RPCglass); geoBuild->createMedium(carbon); } TGeoVolume* create_counter(Int_t modType) { //glass Float_t gdx=Glass_X[modType]; Float_t gdy=Glass_Y[modType]; Float_t gdz=Glass_Z[modType]; //gas gap Int_t nstrips=NumberOfReadoutStrips[modType]; Int_t ngaps=NumberOfGaps[modType]; Float_t ggdx=GasGap_X[modType]; Float_t ggdy=GasGap_Y[modType]; Float_t ggdz=GasGap_Z[modType]; Float_t gsdx=ggdx/float(nstrips); //single stack Float_t dzpos=gdz+ggdz; Float_t startzpos=SingleStackStartPosition_Z[modType]; // electronics //pcb dimensions Float_t dxe=Electronics_X[modType]; Float_t dye=Electronics_Y[modType]; Float_t dze=Electronics_Z[modType]; Float_t yele=(gdy+0.1)/2.+dye/2.; // needed materials TGeoMedium* glassPlateVolMed = gGeoMan->GetMedium(GlasMedium); TGeoMedium* noActiveGasVolMed = gGeoMan->GetMedium(NoActivGasMedium); TGeoMedium* activeGasVolMed = gGeoMan->GetMedium(ActivGasMedium); TGeoMedium* electronicsVolMed = gGeoMan->GetMedium(ElectronicsMedium); // Single glass plate TGeoBBox* glass_plate = new TGeoBBox("", gdx/2., gdy/2., gdz/2.); TGeoVolume* glass_plate_vol = new TGeoVolume("tof_glass", glass_plate, glassPlateVolMed); glass_plate_vol->SetLineColor(kMagenta); // set line color for the glass plate glass_plate_vol->SetTransparency(20); // set transparency for the TOF TGeoTranslation* glass_plate_trans = new TGeoTranslation("", 0., 0., 0.); // Single gas gap TGeoBBox* gas_gap = new TGeoBBox("", ggdx/2., ggdy/2., ggdz/2.); //TGeoVolume* gas_gap_vol = //new TGeoVolume("tof_gas_gap", gas_gap, noActiveGasVolMed); TGeoVolume* gas_gap_vol = new TGeoVolume("tof_gas_active", gas_gap, activeGasVolMed); gas_gap_vol->Divide("Strip",1,nstrips,-ggdx/2.,0); gas_gap_vol->SetLineColor(kRed); // set line color for the gas gap gas_gap_vol->SetTransparency(70); // set transparency for the TOF TGeoTranslation* gas_gap_trans = new TGeoTranslation("", 0., 0., (gdz+ggdz)/2.); // Single subdivided active gas gap /* TGeoBBox* gas_active = new TGeoBBox("", gsdx/2., ggdy/2., ggdz/2.); TGeoVolume* gas_active_vol = new TGeoVolume("tof_gas_active", gas_active, activeGasVolMed); gas_active_vol->SetLineColor(kBlack); // set line color for the gas gap gas_active_vol->SetTransparency(70); // set transparency for the TOF */ // Add glass plate, inactive gas gap and active gas gaps to a single stack TGeoVolume* single_stack = new TGeoVolumeAssembly("single_stack"); single_stack->AddNode(glass_plate_vol, 0, glass_plate_trans); single_stack->AddNode(gas_gap_vol, 0, gas_gap_trans); /* for (Int_t l=0; lAddNode(gas_active_vol, l, gas_active_trans); // single_stack->AddNode(gas_active_vol, l, gas_active_trans); } */ // Add 8 single stacks + one glass plate at the e09.750nd to a multi stack TGeoVolume* multi_stack = new TGeoVolumeAssembly("multi_stack"); Int_t l; for (l=0; lAddNode(single_stack, l, single_stack_trans); } TGeoTranslation* single_glass_back_trans = new TGeoTranslation("", 0., 0., startzpos + ngaps*dzpos); multi_stack->AddNode(glass_plate_vol, l, single_glass_back_trans); // Add electronics above and below the glass stack to build a complete counter TGeoVolume* counter = new TGeoVolumeAssembly("counter"); TGeoTranslation* multi_stack_trans = new TGeoTranslation("", 0., 0., 0.); counter->AddNode(multi_stack, l, multi_stack_trans); TGeoBBox* pcb = new TGeoBBox("", dxe/2., dye/2., dze/2.); TGeoVolume* pcb_vol = new TGeoVolume("pcb", pcb, electronicsVolMed); pcb_vol->SetLineColor(kCyan); // set line color for the gas gap pcb_vol->SetTransparency(10); // set transparency for the TOF for (Int_t l=0; l<2; l++){ yele *= -1.; TGeoTranslation* pcb_trans = new TGeoTranslation("", 0., yele, 0.); counter->AddNode(pcb_vol, l, pcb_trans); } return counter; } TGeoVolume* create_new_counter(Int_t modType) { //glass Float_t gdx=Glass_X[modType]; Float_t gdy=Glass_Y[modType]; Float_t gdz=Glass_Z[modType]; //gas gap Int_t nstrips=NumberOfReadoutStrips[modType]; Int_t ngaps=NumberOfGaps[modType]; Float_t ggdx=GasGap_X[modType]; Float_t ggdy=GasGap_Y[modType]; Float_t ggdz=GasGap_Z[modType]; Float_t gsdx=ggdx/(Float_t)(nstrips); // electronics //pcb dimensions Float_t dxe=Electronics_X[modType]; Float_t dye=Electronics_Y[modType]; Float_t dze=Electronics_Z[modType]; Float_t yele=gdy/2.+dye/2.; // counter size (calculate from glas, gap and electronics sizes) Float_t cdx = TMath::Max(gdx, ggdx); cdx = TMath::Max(cdx, dxe)+ 0.2; Float_t cdy = TMath::Max(gdy, ggdy) + 2*dye + 0.2; Float_t cdz = ngaps * ggdz + (ngaps+1) * gdz + 0.2; // ngaps * (gdz+ggdz) + gdz + 0.2; // ok //calculate thickness and first position in counter of single stack Float_t dzpos = gdz+ggdz; Float_t startzposglas= -ngaps * (gdz + ggdz) /2.; // -cdz/2.+0.1+gdz/2.; // ok // (-cdz+gdz)/2.; // not ok Float_t startzposgas = startzposglas + gdz/2. + ggdz/2.; // -cdz/2.+0.1+gdz +ggdz/2.; // ok // needed materials TGeoMedium* glassPlateVolMed = gGeoMan->GetMedium(GlasMedium); TGeoMedium* noActiveGasVolMed = gGeoMan->GetMedium(NoActivGasMedium); TGeoMedium* activeGasVolMed = gGeoMan->GetMedium(ActivGasMedium); TGeoMedium* electronicsVolMed = gGeoMan->GetMedium(ElectronicsMedium); // define counter volume TGeoBBox* counter_box = new TGeoBBox("", cdx/2., cdy/2., cdz/2.); TGeoVolume* counter = new TGeoVolume("counter", counter_box, noActiveGasVolMed); counter->SetLineColor(kCyan); // set line color for the counter counter->SetTransparency(70); // set transparency for the TOF // define single glass plate volume TGeoBBox* glass_plate = new TGeoBBox("", gdx/2., gdy/2., gdz/2.); TGeoVolume* glass_plate_vol = new TGeoVolume("tof_glass", glass_plate, glassPlateVolMed); glass_plate_vol->SetLineColor(kMagenta); // set line color for the glass plate glass_plate_vol->SetTransparency(20); // set transparency for the TOF // define single gas gap volume TGeoBBox* gas_gap = new TGeoBBox("", ggdx/2., ggdy/2., ggdz/2.); TGeoVolume* gas_gap_vol = new TGeoVolume("Gap", gas_gap, activeGasVolMed); gas_gap_vol->Divide("Cell",1,nstrips,-ggdx/2.,0); gas_gap_vol->SetLineColor(kRed); // set line color for the gas gap gas_gap_vol->SetTransparency(99); // set transparency for the TOF // place 8 gas gaps and 9 glas plates in the counter for( Int_t igap = 0; igap <= ngaps; igap++) { // place (ngaps+1) glass plates Float_t zpos_glas = startzposglas + igap*dzpos; TGeoTranslation* glass_plate_trans = new TGeoTranslation("", 0., 0., zpos_glas); counter->AddNode(glass_plate_vol, igap, glass_plate_trans); // place ngaps gas gaps if (igap < ngaps) { Float_t zpos_gas = startzposgas + igap*dzpos; TGeoTranslation* gas_gap_trans = new TGeoTranslation("", 0., 0., zpos_gas); counter->AddNode(gas_gap_vol, igap, gas_gap_trans); } // cout <<"Zpos(Glas): "<< zpos_glas << endl; // cout <<"Zpos(Gas): "<< zpos_gas << endl; } // create and place the electronics above and below the glas stack TGeoBBox* pcb = new TGeoBBox("", dxe/2., dye/2., dze/2.); TGeoVolume* pcb_vol = new TGeoVolume("pcb", pcb, electronicsVolMed); pcb_vol->SetLineColor(kYellow); // kCyan); // set line color for electronics pcb_vol->SetTransparency(10); // set transparency for the TOF for (Int_t l=0; l<2; l++){ yele *= -1.; TGeoTranslation* pcb_trans = new TGeoTranslation("", 0., yele, 0.); counter->AddNode(pcb_vol, l, pcb_trans); } return counter; } TGeoVolume* create_tof_module(Int_t modType) { Int_t cType = CounterTypeInModule[modType]; Float_t dx=Module_Size_X[modType]; Float_t dy=Module_Size_Y[modType]; Float_t dz=Module_Size_Z[modType]; Float_t width_aluxl=Module_Thick_Alu_X_left; Float_t width_aluxr=Module_Thick_Alu_X_right; Float_t width_aluy=Module_Thick_Alu_Y; Float_t width_aluz=Module_Thick_Alu_Z; Float_t shift_gas_box = (Module_Thick_Alu_X_right - Module_Thick_Alu_X_left)/2; Float_t dxpos=CounterXDistance[modType]; Float_t startxpos=CounterXStartPosition[modType]; Float_t dzoff=CounterZDistance[modType]; Float_t rotangle=CounterRotationAngle[modType]; TGeoMedium* boxVolMed = gGeoMan->GetMedium(BoxVolumeMedium); TGeoMedium* noActiveGasVolMed = gGeoMan->GetMedium(NoActivGasMedium); TString moduleName = Form("module_%d", modType); TGeoVolume* module = new TGeoVolumeAssembly(moduleName); TGeoBBox* alu_box = new TGeoBBox("", dx/2., dy/2., dz/2.); TGeoVolume* alu_box_vol = new TGeoVolume("alu_box", alu_box, boxVolMed); alu_box_vol->SetLineColor(kGreen); // set line color for the alu box alu_box_vol->SetTransparency(20); // set transparency for the TOF TGeoTranslation* alu_box_trans = new TGeoTranslation("", 0., 0., 0.); module->AddNode(alu_box_vol, 0, alu_box_trans); TGeoBBox* gas_box = new TGeoBBox("", (dx-(width_aluxl+width_aluxr))/2., (dy-2*width_aluy)/2., (dz-2*width_aluz)/2.); TGeoVolume* gas_box_vol = new TGeoVolume("gas_box", gas_box, noActiveGasVolMed); gas_box_vol->SetLineColor(kYellow); // set line color for the gas box gas_box_vol->SetTransparency(70); // set transparency for the TOF TGeoTranslation* gas_box_trans = new TGeoTranslation("", shift_gas_box, 0., 0.); alu_box_vol->AddNode(gas_box_vol, 0, gas_box_trans); for (Int_t j=0; j<5; j++){ //loop over counters (modules) Float_t zpos; if (0 == modType) { zpos = dzoff *=-1; } else { zpos = 0.; } //cout << "counter z position " << zpos << endl; TGeoTranslation* counter_trans = new TGeoTranslation("", startxpos+ j*dxpos , 0.0 , zpos); TGeoRotation* counter_rot = new TGeoRotation(); counter_rot->RotateY(rotangle); TGeoCombiTrans* counter_combi_trans = new TGeoCombiTrans(*counter_trans, *counter_rot); gas_box_vol->AddNode(gCounter[cType], j, counter_combi_trans); } return module; } TGeoVolume* create_new_tof_module(Int_t modType) { Int_t cType = CounterTypeInModule[modType]; Float_t dx=Module_Size_X[modType]; Float_t dy=Module_Size_Y[modType]; Float_t dz=Module_Size_Z[modType]; Float_t width_aluxl=Module_Thick_Alu_X_left; Float_t width_aluxr=Module_Thick_Alu_X_right; Float_t width_aluy=Module_Thick_Alu_Y; Float_t width_aluz=Module_Thick_Alu_Z; Float_t shift_gas_box = (Module_Thick_Alu_X_right - Module_Thick_Alu_X_left)/2; Float_t dxpos=CounterXDistance[modType]; Float_t startxpos=CounterXStartPosition[modType]; Float_t dypos=CounterYDistance[modType]; Float_t startypos=CounterYStartPosition[modType]; Float_t dzoff=CounterZDistance[modType]; Float_t rotangle=CounterRotationAngle[modType]; TGeoMedium* boxVolMed = gGeoMan->GetMedium(BoxVolumeMedium); TGeoMedium* noActiveGasVolMed = gGeoMan->GetMedium(NoActivGasMedium); TString moduleName = Form("module_%d", modType); TGeoBBox* module_box = new TGeoBBox("", dx/2., dy/2., dz/2.); TGeoVolume* module = new TGeoVolume(moduleName, module_box, boxVolMed); module->SetLineColor(kGreen); // set line color for the alu box module->SetTransparency(20); // set transparency for the TOF TGeoBBox* gas_box = new TGeoBBox("", (dx-(width_aluxl+width_aluxr))/2., (dy-2*width_aluy)/2., (dz-2*width_aluz)/2.); TGeoVolume* gas_box_vol = new TGeoVolume("gas_box", gas_box, noActiveGasVolMed); gas_box_vol->SetLineColor(kBlue); // set line color for the alu box gas_box_vol->SetTransparency(50); // set transparency for the TOF TGeoTranslation* gas_box_trans = new TGeoTranslation("", shift_gas_box, 0., 0.); module->AddNode(gas_box_vol, 0, gas_box_trans); for (Int_t j=0; j< NCounterInModule[modType]; j++){ //loop over counters (modules) //for (Int_t j=0; j< 1; j++){ //loop over counters (modules) Float_t xpos,ypos,zpos; if (0 == modType || 3 == modType || 4 == modType || 5 == modType) { zpos = dzoff *=-1; } else { zpos = CounterZStartPosition[modType]+j*dzoff; } //cout << "counter z position " << zpos << endl; xpos=startxpos + j*dxpos; ypos=startypos + j*dypos; TGeoTranslation* counter_trans = new TGeoTranslation("", xpos , ypos , zpos); TGeoRotation* counter_rot = new TGeoRotation(); counter_rot->RotateY(rotangle); TGeoCombiTrans* counter_combi_trans = new TGeoCombiTrans(*counter_trans, *counter_rot); gas_box_vol->AddNode(gCounter[cType], j, counter_combi_trans); } return module; } TGeoVolume* create_tof_pole() { // needed materials TGeoMedium* boxVolMed = gGeoMan->GetMedium(BoxVolumeMedium); TGeoMedium* airVolMed = gGeoMan->GetMedium(KeepingVolumeMedium); Float_t dx=Pole_Size_X; Float_t dy=Pole_Size_Y; Float_t dz=Pole_Size_Z; Float_t width_alux=Pole_Thick_X; Float_t width_aluy=Pole_Thick_Y; Float_t width_aluz=Pole_Thick_Z; TGeoVolume* pole = new TGeoVolumeAssembly("Pole"); TGeoBBox* pole_alu_box = new TGeoBBox("", dx/2., dy/2., dz/2.); TGeoVolume* pole_alu_vol = new TGeoVolume("pole_alu", pole_alu_box, boxVolMed); pole_alu_vol->SetLineColor(kGreen); // set line color for the alu box pole_alu_vol->SetTransparency(20); // set transparency for the TOF TGeoTranslation* pole_alu_trans = new TGeoTranslation("", 0., 0., 0.); pole->AddNode(pole_alu_vol, 0, pole_alu_trans); Float_t air_dx = dx/2. - width_alux; Float_t air_dy = dy/2. - width_aluy; Float_t air_dz = dz/2. - width_aluz; // cout << "My pole." << endl; if (air_dx <= 0.) cout << "ERROR - No air volume in pole X, size: "<< air_dx << endl; if (air_dy <= 0.) cout << "ERROR - No air volume in pole Y, size: "<< air_dy << endl; if (air_dz <= 0.) cout << "ERROR - No air volume in pole Z, size: "<< air_dz << endl; if ((air_dx > 0.) && (air_dy > 0.) && (air_dz > 0.)) // crate air volume only, if larger than zero { TGeoBBox* pole_air_box = new TGeoBBox("", air_dx, air_dy, air_dz); // TGeoBBox* pole_air_box = new TGeoBBox("", dx/2.-width_alux, dy/2.-width_aluy, dz/2.-width_aluz); TGeoVolume* pole_air_vol = new TGeoVolume("pole_air", pole_air_box, airVolMed); pole_air_vol->SetLineColor(kYellow); // set line color for the alu box pole_air_vol->SetTransparency(70); // set transparency for the TOF TGeoTranslation* pole_air_trans = new TGeoTranslation("", 0., 0., 0.); pole_alu_vol->AddNode(pole_air_vol, 0, pole_air_trans); } else cout << "Skipping pole_air_vol, no thickness: " << air_dx << " " << air_dy << " " << air_dz << endl; return pole; } TGeoVolume* create_tof_bar(Float_t dx, Float_t dy, Float_t dz) { // needed materials TGeoMedium* boxVolMed = gGeoMan->GetMedium(BoxVolumeMedium); TGeoMedium* airVolMed = gGeoMan->GetMedium(KeepingVolumeMedium); Float_t width_alux=Pole_Thick_X; Float_t width_aluy=Pole_Thick_Y; Float_t width_aluz=Pole_Thick_Z; TGeoVolume* bar = new TGeoVolumeAssembly("Bar"); TGeoBBox* bar_alu_box = new TGeoBBox("", dx/2., dy/2., dz/2.); TGeoVolume* bar_alu_vol = new TGeoVolume("bar_alu", bar_alu_box, boxVolMed); bar_alu_vol->SetLineColor(kGreen); // set line color for the alu box bar_alu_vol->SetTransparency(20); // set transparency for the TOF TGeoTranslation* bar_alu_trans = new TGeoTranslation("", 0., 0., 0.); bar->AddNode(bar_alu_vol, 0, bar_alu_trans); TGeoBBox* bar_air_box = new TGeoBBox("", dx/2.-width_alux, dy/2.-width_aluy, dz/2.-width_aluz); TGeoVolume* bar_air_vol = new TGeoVolume("bar_air", bar_air_box, airVolMed); bar_air_vol->SetLineColor(kYellow); // set line color for the alu box bar_air_vol->SetTransparency(70); // set transparency for the TOF TGeoTranslation* bar_air_trans = new TGeoTranslation("", 0., 0., 0.); bar_alu_vol->AddNode(bar_air_vol, 0, bar_air_trans); return bar; } void position_tof_poles(Int_t modType) { TGeoTranslation* pole_trans=NULL; Int_t numPoles=0; for (Int_t i=0; iGetVolume(geoVersion)->AddNode(gPole, numPoles, pole_trans); numPoles++; }else{ Float_t xPos=Pole_Offset+Pole_Size_X/2.+Pole_Col[i]*DxColl; Float_t zPos=Pole_ZPos[i]; pole_trans = new TGeoTranslation("", xPos, 0., zPos); gGeoMan->GetVolume(geoVersion)->AddNode(gPole, numPoles, pole_trans); numPoles++; pole_trans = new TGeoTranslation("", -xPos, 0., zPos); gGeoMan->GetVolume(geoVersion)->AddNode(gPole, numPoles, pole_trans); numPoles++; } cout << " Position Pole "<< numPoles<<" at z="<< Pole_ZPos[i] << endl; } } void position_tof_bars(Int_t modType) { TGeoTranslation* bar_trans=NULL; Int_t numBars=0; Int_t i; Float_t xPos; Float_t yPos; Float_t zPos; for (i=0; iGetVolume(geoVersion)->AddNode(gBar[i], numBars, bar_trans); numBars++; bar_trans = new TGeoTranslation("", xPos,-yPos, zPos); gGeoMan->GetVolume(geoVersion)->AddNode(gBar[i], numBars, bar_trans); numBars++; bar_trans = new TGeoTranslation("", -xPos, yPos, zPos); gGeoMan->GetVolume(geoVersion)->AddNode(gBar[i], numBars, bar_trans); numBars++; bar_trans = new TGeoTranslation("", -xPos, -yPos, zPos); gGeoMan->GetVolume(geoVersion)->AddNode(gBar[i], numBars, bar_trans); numBars++; } cout << " Position Bar "<< numBars<<" at z="<< Bar_ZPos[i] << endl; // horizontal frame bars i = NumberOfBars; NumberOfBars++; // no bar // gBar[i]=create_tof_bar(2.*xPos+Pole_Size_X,Bar_Size_Y,Bar_Size_Y); zPos = Pole_ZPos[0]+Pole_Size_Z/2.; bar_trans = new TGeoTranslation("", 0., yPos, zPos); gGeoMan->GetVolume(geoVersion)->AddNode(gBar[i], numBars, bar_trans); numBars++; bar_trans = new TGeoTranslation("", 0., -yPos, zPos); gGeoMan->GetVolume(geoVersion)->AddNode(gBar[i], numBars, bar_trans); numBars++; } void position_inner_tof_modules(Int_t modNType) { TGeoTranslation* module_trans=NULL; // Int_t numModules=(Int_t)( (Inner_Module_Last_Y_Position-Inner_Module_First_Y_Position)/Module_Size_Y[modType])+1; Float_t yPos=Inner_Module_First_Y_Position; Int_t ii=0; Float_t xPos = Inner_Module_X_Offset; Float_t zPos = Wall_Z_Position; Pole_ZPos[NumberOfPoles] = zPos; Pole_Col[NumberOfPoles] = 0; NumberOfPoles++; Float_t DzPos =0.; for (Int_t j=0; jDzPos){ DzPos = Module_Size_Z[j]; } } Pole_ZPos[NumberOfPoles]=zPos+DzPos; Pole_Col[NumberOfPoles] = 0; NumberOfPoles++; // for (Int_t j=0; jGetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); /// modNum++; /// module_trans = new TGeoTranslation("", xPos, -yPos, zPos); /// gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); /// modNum++; // // if (ii>0) { // if (ii>1) { // module_trans // = new TGeoTranslation("", xPos, yPos-DeltaY/2, zPos+Module_Size_Z[modType]); // gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); // modNum++; // module_trans // = new TGeoTranslation("", xPos, -(yPos-DeltaY/2), zPos+Module_Size_Z[modType]); // gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); // modNum++; // } } } // module_trans = new TGeoTranslation("", xPos, -49-3, zPos); // Mar2019 setup const Int_t NModules=5; xPos=0.; yPos=0.; zPos=TOF_Z_Front; const Double_t ModDx[NModules]= { 1.5, 0., -1.5, 49.8, 49.8}; const Double_t ModDy[NModules]= { 0., 0., 0., 0., 0. }; const Double_t ModDz[NModules]= { 0., 16.5, 34., 0., 16.5}; const Double_t ModAng[NModules]={-90.,-90.,-90., -90.,-90.0}; TGeoRotation* module_rot = NULL; TGeoCombiTrans* module_combi_trans = NULL; for (Int_t iMod=0; iModRotateZ(ModAng[iMod]); module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_combi_trans); modNum++; } /* module_trans = new TGeoTranslation("", xPos, 0, zPos+16.5); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); modNum++; // module_trans = new TGeoTranslation("", xPos, 49+3, zPos); module_trans = new TGeoTranslation("", xPos, 0, zPos+16.5+17.5); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); modNum++; // module_trans = new TGeoTranslation("", xPos,-26, zPos+Module_Size_Z[modType]); module_trans = new TGeoTranslation("", xPos, -49.8, zPos); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); modNum++; // module_trans = new TGeoTranslation("", xPos, 26, zPos+Module_Size_Z[modType]); module_trans = new TGeoTranslation("", xPos, -49.8, zPos+16.5); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); modNum++; */ } void position_Dia(Int_t modNType) { TGeoTranslation* module_trans=NULL; TGeoRotation* module_rot = new TGeoRotation(); module_rot->RotateZ(Dia_rotate_Z); TGeoCombiTrans* module_combi_trans = NULL; // Int_t numModules=(Int_t)( (Inner_Module_Last_Y_Position-Inner_Module_First_Y_Position)/Module_Size_Y[modType])+1; Float_t yPos=Dia_First_Y_Position; Int_t ii=0; Float_t xPos = Dia_X_Offset; Float_t zPos = Dia_Z_Position; Int_t modNum = 0; for (Int_t j=0; jGetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_combi_trans); modNum++; } } } void position_Star2(Int_t modNType) { TGeoTranslation* module_trans=NULL; TGeoRotation* module_rot = new TGeoRotation(); module_rot->RotateZ(Star2_rotate_Z); TGeoCombiTrans* module_combi_trans = NULL; Float_t yPos = Star2_First_Y_Position; Float_t zPos = Star2_First_Z_Position; Int_t ii=0; Int_t modNum = 0; for (Int_t j=0; jGetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_combi_trans); modNum++; yPos += Star2_Delta_Y_Position; zPos += Star2_Delta_Z_Position; } } } void position_cer_modules(Int_t modNType) { Int_t ii=0; Int_t modNum = 0; for (Int_t j=1; jRotateZ(Cer_rotate_Z[j]); TGeoCombiTrans* module_combi_trans = NULL; for(Int_t i=0; iGetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_combi_trans); // modNum++; } } } void position_CERN(Int_t modNType) { TGeoTranslation* module_trans=NULL; TGeoRotation* module_rot = new TGeoRotation("CERN",CERN_rotate_Z,MeanTheta,0.); //module_rot->RotateZ(CERN_rotate_Z); TGeoCombiTrans* module_combi_trans = NULL; // Int_t numModules=(Int_t)( (Inner_Module_Last_Y_Position-Inner_Module_First_Y_Position)/Module_Size_Y[modType])+1; Float_t yPos=CERN_First_Y_Position; Int_t ii=0; Float_t xPos = CERN_X_Offset; Float_t zPos = CERN_Z_Position; for (Int_t j=0; jGetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_combi_trans); modNum++; } } } void position_side_tof_modules(Int_t modNType) { TGeoTranslation* module_trans=NULL; TGeoRotation* module_rot = new TGeoRotation(); module_rot->RotateZ(180.); TGeoCombiTrans* module_combi_trans = NULL; // Int_t numModules=(Int_t)( (Inner_Module_Last_Y_Position-Inner_Module_First_Y_Position)/Module_Size_Y[modType])+1; Float_t yPos=0.; //Inner_Module_First_Y_Position; Int_t ii=0; for (Int_t j=0; j1){yPos += DeltaY;} Last_Size_Y=Module_Size_Y[modType]; Last_Over_Y=Module_Over_Y[modType]; Float_t xPos = InnerSide_Module_X_Offset; Float_t zPos = Wall_Z_Position; cout <<"Position InnerSide Module "<GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); modNum++; module_trans = new TGeoTranslation("", -xPos, yPos, zPos); module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_combi_trans); modNum++; if (ii>1) { module_trans = new TGeoTranslation("", xPos, -yPos, zPos); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); modNum++; module_trans = new TGeoTranslation("", -xPos, -yPos, zPos); module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_combi_trans); modNum++; module_trans = new TGeoTranslation("", xPos, yPos-DeltaY/2, zPos+Module_Size_Z[modType]); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); modNum++; module_trans = new TGeoTranslation("", -xPos, yPos-DeltaY/2, zPos+Module_Size_Z[modType]); module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_combi_trans); modNum++; module_trans = new TGeoTranslation("", xPos, -(yPos-DeltaY/2), zPos+Module_Size_Z[modType]); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_trans); modNum++; module_trans = new TGeoTranslation("", -xPos,-(yPos-DeltaY/2), zPos+Module_Size_Z[modType]); module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum, module_combi_trans); modNum++; } } } } void position_outer_tof_modules(Int_t nCol) //modType, Int_t col1, Int_t col2) { TGeoTranslation* module_trans=NULL; TGeoRotation* module_rot = new TGeoRotation(); module_rot->RotateZ(180.); TGeoCombiTrans* module_combi_trans = NULL; // Int_t numModules=(Int_t)( (Outer_Module_Last_Y_Position-Outer_Module_First_Y_Position)/Module_Size_Y[modType])+1; Int_t modNum[NofModuleTypes]; for (Int_t k=0; kDzPos){ if(Outer_Module_Number[k][j]>0){ DzPos = Module_Size_Z[modType]; } } } zPos -= 2.*DzPos; //((j+1)*2*Module_Size_Z[modType]); Pole_ZPos[NumberOfPoles] = zPos; Pole_Col[NumberOfPoles] = j+1; NumberOfPoles++; Pole_ZPos[NumberOfPoles] = zPos+DzPos; Pole_Col[NumberOfPoles] = j+1; NumberOfPoles++; //if (j+1==nCol) { if (1) { Pole_ZPos[NumberOfPoles] = Pole_ZPos[0]; Pole_Col[NumberOfPoles] = j+1; NumberOfPoles++; Bar_Size_Z = Pole_ZPos[0] - zPos; gBar[NumberOfBars] = create_tof_bar(Bar_Size_X, Bar_Size_Y, Bar_Size_Z); Bar_ZPos[NumberOfBars] = zPos+Bar_Size_Z/2.-Pole_Size_Z/2.; Bar_XPos[NumberOfBars] = xPos + Pole_Offset; NumberOfBars++; } for (Int_t k=0; k1){yPos += DeltaY;} Last_Size_Y=Module_Size_Y[modType]; Last_Over_Y=Module_Over_Y[modType]; cout <<"Position Outer Module "<GetVolume(geoVersion)->AddNode(gModules[modType], modNum[modType], module_trans); modNum[modType]++; module_trans = new TGeoTranslation("", -xPos, yPos, zPos); module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum[modType], module_combi_trans); modNum[modType]++; if (ii>1) { module_trans = new TGeoTranslation("", xPos, -yPos, zPos); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum[modType], module_trans); modNum[modType]++; module_trans = new TGeoTranslation("", -xPos, -yPos, zPos); module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum[modType], module_combi_trans); modNum[modType]++; // second layer module_trans = new TGeoTranslation("", xPos, yPos-DeltaY/2., zPos+DzPos); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum[modType], module_trans); modNum[modType]++; module_trans = new TGeoTranslation("", -xPos, yPos-DeltaY/2., zPos+DzPos); module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum[modType], module_combi_trans); modNum[modType]++; module_trans = new TGeoTranslation("", xPos, -(yPos-DeltaY/2.), zPos+DzPos); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum[modType], module_trans); modNum[modType]++; module_trans = new TGeoTranslation("", -xPos, -(yPos-DeltaY/2.), zPos+DzPos); module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); gGeoMan->GetVolume(geoVersion)->AddNode(gModules[modType], modNum[modType], module_combi_trans); modNum[modType]++; } } } } } void dump_info_file() { TDatime datetime; // used to get timestamp printf("writing info file: %s\n", FileNameInfo.Data()); FILE *ifile; ifile = fopen(FileNameInfo.Data(),"w"); if (ifile == NULL) { printf("error opening %s\n", FileNameInfo.Data()); exit(1); } fprintf(ifile,"#\n## %s information file\n#\n\n", geoVersion.Data()); fprintf(ifile,"# created %d\n\n", datetime.GetDate()); fprintf(ifile,"# TOF setup\n"); if (TOF_Z_Front == 450) fprintf(ifile,"SIS 100 hadron setup\n"); if (TOF_Z_Front == 600) fprintf(ifile,"SIS 100 electron\n"); if (TOF_Z_Front == 650) fprintf(ifile,"SIS 100 muon\n"); if (TOF_Z_Front == 880) fprintf(ifile,"SIS 300 electron\n"); if (TOF_Z_Front == 1020) fprintf(ifile,"SIS 300 muon\n"); fprintf(ifile,"\n"); const Float_t TOF_Z_Back = Wall_Z_Position + 1.5 * Module_Size_Z[0]; // back of TOF wall fprintf(ifile,"# envelope\n"); // Show extension of TRD fprintf(ifile,"%7.2f cm start of TOF (z)\n", TOF_Z_Front); fprintf(ifile,"%7.2f cm end of TOF (z)\n", TOF_Z_Back); fprintf(ifile,"\n"); // Layer thickness fprintf(ifile,"# central tower position\n"); fprintf(ifile,"%7.2f cm center of staggered, front RPC cell at x=0\n", Wall_Z_Position); fprintf(ifile,"\n"); fclose(ifile); }