// --------------------------------------------------------------------------
//
// Macro for standard transport simulation using UrQMD input and GEANT3
// Standard CBM setup with MVD, STS, RICH, TRD, TOF and ECAL
//
// V. Friese 22/02/2007
//
// 2017-03-30 - DE - add mcbm_sim.C to CTests
// 2014-06-30 - DE - available setups from geometry/setup:
// 2014-06-30 - DE - sis100_hadron
// 2014-06-30 - DE - sis100_electron
// 2014-06-30 - DE - sis100_muon
// 2014-06-30 - DE - sis300_electron
// 2014-06-30 - DE - sis300_muon
//
// --------------------------------------------------------------------------
void mcbm_mc(Int_t nEvents = 2,
const char* setupName = "sis18_mcbm_20deg_long",
const char* inputFile ="")
{
// ========================================================================
// Adjust this part according to your requirements
// available input files
TString defaultInputFile = "/input/urqmd.agag.1.65gev.centr.00001.root";
// TString defaultInputFile = "/input/urqmd.agag.1.65gev.mbias.00001.root";
// TString defaultInputFile = "/input/urqmd.auau.1.24gev.mbias.00001.root";
// TString defaultInputFile = "/input/urqmd.niau.1.93gev.centr.00001.root";
// TString defaultInputFile = "/input/urqmd.niau.1.93gev.mbias.00001.root";
// TString defaultInputFile = "/input/urqmd.nini.1.93gev.centr.00001.root";
// TString defaultInputFile = "/input/urqmd.nini.1.93gev.mbias.00001.root";
// TString defaultInputFile = "/input/urqmd.pau.4.5gev.mbias.00001.root";
// ----- Environment --------------------------------------------------
TString myName = "mcbm_mc"; // this macro's name for screen output
TString srcDir = gSystem->Getenv("VMCWORKDIR"); // top source directory
// ------------------------------------------------------------------------
// ----- In- and output file names ------------------------------------
TString inFile = ""; // give here or as argument; otherwise default is taken
TString outDir = "data/";
TString outFile = outDir + setupName + "_test.mc.root";
TString parFile = outDir + setupName + "_params.root";
TString geoFile = outDir + setupName + "_geofile_full.root";
// ------------------------------------------------------------------------
// --- Logger settings ----------------------------------------------------
TString logLevel = "INFO";
TString logVerbosity = "LOW";
// ------------------------------------------------------------------------
// --- Define the target geometry -----------------------------------------
//
// The target is not part of the setup, since one and the same setup can
// and will be used with different targets.
// The target is constructed as a tube in z direction with the specified
// diameter (in x and y) and thickness (in z). It will be placed at the
// specified position as daughter volume of the volume present there. It is
// in the responsibility of the user that no overlaps or extrusions are
// created by the placement of the target.
//
TString targetElement = "Gold";
Double_t targetThickness = 0.1; // full thickness in cm
Double_t targetDiameter = 0.5; // diameter in cm
Double_t targetPosX = 0.; // target x position in global c.s. [cm]
Double_t targetPosY = 0.; // target y position in global c.s. [cm]
Double_t targetPosZ = 0.; // target z position in global c.s. [cm]
Double_t targetRotY = 0.; // target rotation angle around the y axis [deg]
Double_t beamRotY = 20.; // the primary beam is at 25 degrees to the left of the mCBM setup
// Double_t beamRotY = 25.; // the primary beam is at 25 degrees to the left of the mCBM setup
// ------------------------------------------------------------------------
// --- Define the creation of the primary vertex ------------------------
//
// By default, the primary vertex point is sampled from a Gaussian
// distribution in both x and y with the specified beam profile width,
// and from a flat distribution in z over the extension of the target.
// By setting the respective flags to kFALSE, the primary vertex will always
// at the (0., 0.) in x and y and in the z centre of the target, respectively.
//
Bool_t smearVertexXY = kTRUE;
Bool_t smearVertexZ = kTRUE;
Double_t beamWidthX = 0.1; // Gaussian sigma of the beam profile in x [cm]
Double_t beamWidthY = 0.1; // Gaussian sigma of the beam profile in y [cm]
// ------------------------------------------------------------------------
// In general, the following parts need not be touched
// ========================================================================
// ----- Timer --------------------------------------------------------
TStopwatch timer;
timer.Start();
// ------------------------------------------------------------------------
// ---- Debug option -------------------------------------------------
gDebug = 0;
// ------------------------------------------------------------------------
// ----- Remove old CTest runtime dependency file ---------------------
TString depFile = Remove_CTest_Dependency_File(outDir, "mcbm_mc" , setupName);
// ------------------------------------------------------------------------
// ----- Create simulation run ----------------------------------------
FairRunSim* run = new FairRunSim();
run->SetName("TGeant3"); // Transport engine
run->SetOutputFile(outFile); // Output file
run->SetGenerateRunInfo(kTRUE); // Create FairRunInfo file
// ------------------------------------------------------------------------
// ----- Logger settings ----------------------------------------------
FairLogger::GetLogger()->SetLogScreenLevel(logLevel.Data());
FairLogger::GetLogger()->SetLogVerbosityLevel(logVerbosity.Data());
// ------------------------------------------------------------------------
// ----- Load the geometry setup -------------------------------------
std::cout << std::endl;
TString setupFile = srcDir + "/geometry/setup/setup_" + setupName + ".C";
TString setupFunct = "setup_";
setupFunct = setupFunct + setupName + "()";
std::cout << "-I- " << myName << ": Loading macro " << setupFile << std::endl;
gROOT->LoadMacro(setupFile);
gROOT->ProcessLine(setupFunct);
// ------------------------------------------------------------------------
// ----- Input file ---------------------------------------------------
std::cout << std::endl;
TString defaultInput = srcDir + defaultInputFile;
if ( inFile.IsNull() ) { // Not defined in the macro explicitly
if ( strcmp(inputFile, "") == 0 ) { // not given as argument to the macro
inFile = defaultInput;
}
else inFile = inputFile;
}
std::cout << "-I- " << myName << ": Using input file " << inFile << std::endl;
// ------------------------------------------------------------------------
// ----- Create media -------------------------------------------------
std::cout << std::endl;
std::cout << "-I- " << myName << ": Setting media file" << std::endl;
run->SetMaterials("media.geo"); // Materials
// ------------------------------------------------------------------------
// ----- Create and register modules ----------------------------------
std::cout << std::endl;
TString macroName = gSystem->Getenv("VMCWORKDIR");
macroName += "/macro/mcbm/modules/registerSetup.C";
// macroName += "/macro/run/modules/registerSetup.C";
std::cout << "Loading macro " << macroName << std::endl;
gROOT->LoadMacro(macroName);
gROOT->ProcessLine("registerSetup()");
// ------------------------------------------------------------------------
// ----- Create and register the target -------------------------------
std::cout << std::endl;
std::cout << "-I- " << myName << ": Registering target" << std::endl;
CbmTarget* target = new CbmTarget(targetElement.Data(),
targetThickness,
targetDiameter);
target->SetPosition(targetPosX, targetPosY, targetPosZ);
target->SetRotation(targetRotY);
target->Print();
run->AddModule(target);
// ------------------------------------------------------------------------
// ----- Create magnetic field ----------------------------------------
std::cout << std::endl;
std::cout << "-I- " << myName << ": Registering magnetic field" << std::endl;
CbmFieldMap* magField = CbmSetup::Instance()->CreateFieldMap();
if ( ! magField ) {
std::cout << "-E- run_sim_new: No valid field!";
return;
}
run->SetField(magField);
// ------------------------------------------------------------------------
// ----- Create PrimaryGenerator --------------------------------------
FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
// --- Uniform distribution of event plane angle
primGen->SetEventPlane(0., 2. * TMath::Pi());
// --- Get target parameters
Double_t tX = 0.;
Double_t tY = 0.;
Double_t tZ = 0.;
Double_t tDz = 0.;
if ( target ) {
target->GetPosition(tX, tY, tZ);
tDz = target->GetThickness();
}
primGen->SetTarget(tZ, tDz);
primGen->SetBeam(0., 0., beamWidthX, beamWidthY);
primGen->SmearGausVertexXY(smearVertexXY);
primGen->SmearVertexZ(smearVertexZ);
//
// TODO: Currently, there is no guaranteed consistency of the beam profile
// and the transversal target dimension, i.e., that the sampled primary
// vertex falls into the target volume. This would require changes
// in the FairPrimaryGenerator class.
// ------------------------------------------------------------------------
// Use the CbmUnigenGenrator for the input
CbmUnigenGenerator* uniGen = new CbmUnigenGenerator(inFile);
uniGen->SetEventPlane(0. , 360.);
primGen->AddGenerator(uniGen);
primGen->SetBeamAngle(beamRotY * TMath::Pi()/180.,0,0,0); // set direction of beam
run->SetGenerator(primGen);
// ------------------------------------------------------------------------
// // ----- Create Electron gun as alternative -----------------------------
// FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
// // Use the FairBoxGenerator which generates a soingle electron
// FairBoxGenerator *eminus = new FairBoxGenerator();
// eminus->SetPDGType(11);
// eminus->SetMultiplicity(1000);
// // eminus->SetBoxXYZ(32.,-32.,32.,-32.,0.); // shoot at corner of diagonal modules
// // eminus->SetBoxXYZ(0., 0., 0., 0., 0.); // shoot at corner of diagonal modules
// // eminus->SetBoxXYZ(57.,-57., 0., 0.,0.); // shoot at corner of diagonal modules
// // eminus->SetBoxXYZ(-57.,-57., 57., 57.,0.); // shoot at corner of diagonal modules
// eminus->SetBoxXYZ(-180.,-15.,-150.,15.,0.); // shoot at corner of diagonal modules
// eminus->SetPRange(2.,2.);
// eminus->SetPhiRange(0.,360.);
// eminus->SetThetaRange(0.,0.);
// primGen->AddGenerator(eminus);
//
// // primGen->SetBeamAngle(30*TMath::Pi()/180.,0,0,0); // set direction of beam to 30 degrees
//
// fRun->SetGenerator(primGen);
// // ------------------------------------------------------------------------
// Visualisation of trajectories (TGeoManager Only)
// Switch this on if you want to visualise tracks in the event display.
// This is normally switch off, because of the huge files created
// when it is switched on.
run->SetStoreTraj(kTRUE);
// ----- Run initialisation -------------------------------------------
std::cout << std::endl;
std::cout << "-I- " << myName << ": Initialise run" << std::endl;
run->Init();
// ------------------------------------------------------------------------
// // Set cuts for storing the trajectories.
// // Switch this on only if trajectories are stored.
// // Choose this cuts according to your needs, but be aware
// // that the file size of the output file depends on these cuts
//
// FairTrajFilter* trajFilter = FairTrajFilter::Instance();
// if ( trajFilter ) {
// trajFilter->SetStepSizeCut(0.01); // 1 cm
// trajFilter->SetVertexCut(-2000., -2000., 4., 2000., 2000., 100.);
// trajFilter->SetMomentumCutP(10e-3); // p_lab > 10 MeV
// trajFilter->SetEnergyCut(0., 1.02); // 0 < Etot < 1.04 GeV
// trajFilter->SetStorePrimaries(kTRUE);
// trajFilter->SetStoreSecondaries(kTRUE);
// }
// ----- Runtime database ---------------------------------------------
std::cout << std::endl << std::endl;
std::cout << "-I- " << myName << ": Set runtime DB" << std::endl;
FairRuntimeDb* rtdb = run->GetRuntimeDb();
CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar");
fieldPar->SetParameters(magField);
fieldPar->setChanged();
fieldPar->setInputVersion(run->GetRunId(),1);
Bool_t kParameterMerged = kTRUE;
FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
parOut->open(parFile.Data());
rtdb->setOutput(parOut);
rtdb->saveOutput();
rtdb->print();
// ------------------------------------------------------------------------
// ----- Start run ----------------------------------------------------
std::cout << std::endl << std::endl;
std::cout << "-I- " << myName << ": Starting run" << std::endl;
run->Run(nEvents);
// ------------------------------------------------------------------------
// ----- Finish -------------------------------------------------------
run->CreateGeometryFile(geoFile);
timer.Stop();
Double_t rtime = timer.RealTime();
Double_t ctime = timer.CpuTime();
std::cout << std::endl << std::endl;
std::cout << "Macro finished successfully." << std::endl;
std::cout << "Output file is " << outFile << std::endl;
std::cout << "Parameter file is " << parFile << std::endl;
std::cout << "Geometry file is " << geoFile << std::endl;
std::cout << "Real time " << rtime << " s, CPU time " << ctime
<< "s" << std::endl << std::endl;
// ------------------------------------------------------------------------
// ----- Resource monitoring ------------------------------------------
if ( Has_Fair_Monitor() ) { // FairRoot Version >= 15.11
// Extract the maximal used memory an add is as Dart measurement
// This line is filtered by CTest and the value send to CDash
FairSystemInfo sysInfo;
Float_t maxMemory=sysInfo.GetMaxMemory();
std::cout << "";
std::cout << maxMemory;
std::cout << "" << std::endl;
Float_t cpuUsage=ctime/rtime;
std::cout << "";
std::cout << cpuUsage;
std::cout << "" << std::endl;
}
std::cout << " Test passed" << std::endl;
std::cout << " All ok " << std::endl;
// Function needed for CTest runtime dependency
Generate_CTest_Dependency_File(depFile);
RemoveGeoManager();
// ------------------------------------------------------------------------
}