/* $Id: CbmEcalSimulateFullMC.C,v 1.6 2006/09/15 12:50:52 turany Exp $ */ /* History of cvs commits: * * $Log: CbmEcalSimulateFullMC.C,v $ * Revision 1.6 2006/09/15 12:50:52 turany * load the base before the field * * Revision 1.5 2006/07/29 00:31:50 prokudin * New way of parameter files processing * * Revision 1.4 2006/06/30 13:05:24 kharlov * Remove tracking cut setting because it is set in CbmEcal now * * Revision 1.3 2006/06/28 14:23:53 kharlov * Tracking cut for ECAL media are set * * Revision 1.2 2006/06/22 07:04:52 kharlov * Separate scripts for fast and full MC are provided * * Revision 1.1 2006/06/12 12:03:08 kharlov * Adding file for ECAL Full MC simulation * * Revision 1.1 2006/04/25 08:20:51 kharlov * Full chain of ECAL simulation from MCpoints to Hits and analysis * */ // -------------------------------------------------------------------------- // // Macro for standard transport simulation using UrQMD input and GEANT3 // Standard CBM setup with STS, RICH, TRD, TOF and ECAL // ECAL is simulated with Full MC (MC points are collected at each // energy deposition of the shower development in ECAL) // // V. Friese 06/03/2006 // // -------------------------------------------------------------------------- { // ======================================================================== // Adjust this part according to your requirements // Collision system TString system = "auau"; // Beam momentum TString beam = "25gev"; // Trigger (centrality) TString trigger = "centr"; // Number of events Int_t nEvents = 10; // Output file name TString outFile = system + "." + beam + "." + trigger + ".mc.root"; outFile = "test.mc.root"; // Parameter file name TString parFile = "params.root"; // Cave geometry TString caveGeom = "cave.geo"; // Target geometry TString targetGeom = "target.geo"; // Beam pipe geometry TString pipeGeom = "pipe_newvac.geo"; // Magnet geometry and field map TString magnetGeom = "magnet_active.geo"; TString fieldMap = "FieldActive"; Double_t fieldZ = 50.; // z position of field centre Double_t fieldScale = 1.; // field scaling factor // STS geometry TString stsGeom = "sts-3maps-4strips.geo"; // RICH geometry TString richGeom = "rich.geo"; // TRD geometry TString trdGeom = "trd_9.geo"; // TOF geometry TString tofGeom = "tof.geo"; // In general, the following parts need not be touched // ======================================================================== // ----- Input file name ---------------------------------------------- TString inFile = "/d/cbm01/cbmsim/urqmd/" + system + "/" + beam + "/" + trigger + "/urqmd." + system + "." + beam + "." + trigger + ".0000.ftn14"; // ------------------------------------------------------------------------ // ---- Debug option ------------------------------------------------- gDebug = 0; // ------------------------------------------------------------------------ // ----- Timer -------------------------------------------------------- TStopwatch timer; timer.Start(); // ------------------------------------------------------------------------ // ---- Load libraries ------------------------------------------------- gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C"); basiclibs(); gSystem->Load("libGeoBase"); gSystem->Load("libParBase"); gSystem->Load("libBase"); gSystem->Load("libField"); gSystem->Load("libGen"); gSystem->Load("libPassive"); gSystem->Load("libSts"); gSystem->Load("libRich"); gSystem->Load("libTrd"); gSystem->Load("libTof"); gSystem->Load("libEcal"); // ------------------------------------------------------------------------ // ----- Create detectors and passive volumes ------------------------- CbmModule* cave= new CbmCave("CAVE"); cave->SetGeometryFileName(caveGeom); CbmModule* pipe= new CbmPipe("PIPE"); pipe->SetGeometryFileName(pipeGeom); CbmModule* target= new CbmTarget("Target"); target->SetGeometryFileName(targetGeom); CbmModule* magnet= new CbmMagnet("MAGNET"); magnet->SetGeometryFileName(magnetGeom); CbmDetector* sts= new CbmSts("STS", kTRUE); sts->SetGeometryFileName(stsGeom); CbmDetector* rich= new CbmRich("RICH", kTRUE); rich->SetGeometryFileName(richGeom); CbmDetector* trd= new CbmTrd("TRD",kTRUE ); trd->SetGeometryFileName(trdGeom); CbmDetector* tof= new CbmTof("TOF", kTRUE ); tof->SetGeometryFileName(tofGeom); CbmDetector* ecal= new CbmEcal("ECAL", kTRUE,"ecal_FullMC.geo"); // ------------------------------------------------------------------------ // ----- Create magnetic field ---------------------------------------- if ( fieldMap == "FieldActive" || fieldMap == "FieldIron") magField = new CbmFieldMapSym3(fieldMap); else if ( fieldMap == "FieldAlligator" ) magField = new CbmFieldMapSym2(fieldMap); else { cout << "===> ERROR: Field map " << fieldMap << " unknown! " << endl; exit; } magField->SetPosition(0., 0., fieldZ); magField->SetScale(fieldScale); // ------------------------------------------------------------------------ // ----- Create PrimaryGenerator -------------------------------------- CbmPrimaryGenerator* primGen = new CbmPrimaryGenerator(); CbmBoxGenerator* boxGen = new CbmBoxGenerator(22, 1); boxGen->SetPtRange(1.,1.01); boxGen->SetThetaRange(4.,4.01); boxGen->Init(); primGen->AddGenerator(boxGen); // ------------------------------------------------------------------------ // ----- Create simulation run ---------------------------------------- CbmRunSim* fRun = new CbmRunSim(); fRun->SetName("TGeant3"); // Transport engine fRun->SetOutputFile(outFile); // Output file fRun->SetGenerator(primGen); // PrimaryGenerator fRun->SetMaterials("media.geo"); // Materials fRun->AddModule(cave); fRun->AddModule(pipe); fRun->AddModule(target); fRun->AddModule(magnet); fRun->AddModule(sts); fRun->AddModule(rich); fRun->AddModule(trd); fRun->AddModule(tof); fRun->AddModule(ecal); fRun->SetField(magField); fRun->Init(); // ------------------------------------------------------------------------ // ----- Fill parameter containers ------------------------------------ CbmRuntimeDb* rtdb = fRun->GetRuntimeDb(); Bool_t kParameterMerged = kTRUE; CbmParRootFileIo* parOut = new CbmParRootFileIo(kParameterMerged); parOut->open(gFile); rtdb->setOutput(parOut); rtdb->saveOutput(); rtdb->print(); // ------------------------------------------------------------------------ // ----- Start run ---------------------------------------------------- fRun->Run(nEvents); // ------------------------------------------------------------------------ // ----- Finish ------------------------------------------------------- timer.Stop(); Double_t rtime = timer.RealTime(); Double_t ctime = timer.CpuTime(); cout << endl << endl; cout << "Macro finished succesfully." << endl; cout << "Output file is " << outFile << endl; cout << "Parameter file is " << parFile << endl; cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << endl << endl; // ------------------------------------------------------------------------ }