/** CbmMuchDigitizeGem.cxx *@author Evgeny Kryshen *@since 01.05.11 *@version 2.0 *@author Mikhail Ryzhinskiy *@since 19.03.07 *@version 1.0 ** ** CBM task class for digitizing MUCH ** Task level RECO ** Produces objects of type CbmMuchDigi out of CbmMuchPoint. **/ // Includes from MUCH #include "CbmMuchDigitizeGem.h" #include "CbmMuchPoint.h" #include "CbmMuchSector.h" #include "CbmMuchStation.h" #include "CbmMuchModuleGem.h" #include "CbmMuchModuleGemRadial.h" #include "CbmMuchModuleGemRectangular.h" #include "CbmMuchPad.h" #include "CbmMuchPadRadial.h" #include "CbmMuchPadRectangular.h" #include "CbmMuchSectorRadial.h" #include "CbmMuchSectorRectangular.h" // Includes from base #include "FairRootManager.h" #include "FairMCPoint.h" #include "CbmMCTrack.h" #include "CbmMCEpoch.h" // Includes from ROOT #include "TObjArray.h" #include "TDatabasePDG.h" #include "TFile.h" #include "TRandom.h" #include "TChain.h" #include using std::map; // ------------------------------------------------------------------------- CbmMuchDigitizeGem::CbmMuchDigitizeGem(const char* digiFileName) : FairTask("MuchDigitizeGem",1), fAlgorithm(1), fGeoScheme(CbmMuchGeoScheme::Instance()), fDigiFile(digiFileName), fPoints(NULL), fMCTracks(NULL), fDigis(NULL), fDigiMatches(NULL), fMcEpoch(NULL), fNFailed(0), fNOutside(0), fNMulti(0), fNADCChannels(256), fQMax(500000), fQThreshold(3), fMeanNoise(0),//(1500), fSpotRadius(0.05), fMeanGasGain(1e4), fDTime(3), fEvent(0), fDeadPadsFrac(0), fTimer(), fEpoch(0), fMcChain(NULL), fDeadTime(400), fDriftVelocity(100), fPeakingTime(20), fRemainderTime(40), fTimeBinWidth(1), fChainEventId(0), fTotalDriftTime(0.) { Double_t driftVolumeWidth = 0.4; // cm // TODO fTotalDriftTime = driftVolumeWidth/fDriftVelocity*10000; // [ns]; } // ------------------------------------------------------------------------- // ----- Destructor ---------------------------------------------------- CbmMuchDigitizeGem::~CbmMuchDigitizeGem() { if (fDigis) { fDigis->Delete(); delete fDigis; } if (fDigiMatches) { fDigiMatches->Delete(); delete fDigiMatches; } } // ------------------------------------------------------------------------- // ----- Private method Init ------------------------------------------- InitStatus CbmMuchDigitizeGem::Init() { FairRootManager* ioman = FairRootManager::Instance(); if (!ioman) Fatal("Init", "No FairRootManager"); // Initialize GeoScheme TFile* oldfile=gFile; TFile* file=new TFile(fDigiFile); TObjArray* stations = (TObjArray*) file->Get("stations"); file->Close(); file->Delete(); gFile=oldfile; fGeoScheme->Init(stations); // Get input array of MuchPoints fPoints = (TClonesArray*) ioman->GetObject("MuchPoint"); // Get input array of MC tracks fMCTracks = (TClonesArray*) ioman->GetObject("MCTrack"); if (fEpoch) { fMcEpoch = (CbmMCEpoch*) ioman->GetObject("MCEpoch."); if (!fMcEpoch) { Fatal("Init","No MC epoch branch found in file"); return kFATAL; } // Check for the chain of MC files if (!fMcChain) { Fatal("Init","MC chain pointer is NULL"); return kFATAL; } if (!fMcChain->GetEntries()) { Fatal("Init","No entries in the MC chain"); return kFATAL; } fMCTracks = new TClonesArray("CbmMCTrack"); fMcChain->SetBranchAddress("MCTrack",&fMCTracks); fMcChain->GetEntry(fChainEventId); } // Register output array MuchDigi fDigis = new TClonesArray("CbmMuchDigi", 1000); ioman->Register("MuchDigi", "Digital response in MUCH", fDigis, kTRUE); // Register output array MuchDigiMatches fDigiMatches = new TClonesArray("CbmMuchDigiMatch", 1000); ioman->Register("MuchDigiMatch", "Digi Match in MUCH", fDigiMatches, kTRUE); fEvent = 0; return kSUCCESS; } // ------------------------------------------------------------------------- // ----- Public method Exec -------------------------------------------- void CbmMuchDigitizeGem::Exec(Option_t* opt) { fTimer.Start(); fDigis->Clear(); fDigiMatches->Delete(); if (fEpoch) fPoints = fMcEpoch->GetPoints(kMUCH); Int_t nPoints = fPoints->GetEntriesFast(); for (Int_t iPoint = 0; iPoint < nPoints; iPoint++) { CbmMuchPoint* point = (CbmMuchPoint*) fPoints->At(iPoint); if (!point || !point->IsUsable()) continue; CbmMuchModule* module = fGeoScheme->GetModuleByDetId(point->GetDetectorID()); if (!module) continue; ExecPoint(point, iPoint); } // Add remaining digis vector modules = fGeoScheme->GetModules(); for (Int_t im=0;imGetDetectorType()!=1 && modules[im]->GetDetectorType()!=3) continue; CbmMuchModuleGem* module = (CbmMuchModuleGem*) modules[im]; vector pads = module->GetPads(); for (Int_t ip=0;ipGetEntriesFast()); } // ------------------------------------------------------------------------- // ------- Private method ExecAdvanced ------------------------------------- Bool_t CbmMuchDigitizeGem::ExecPoint(CbmMuchPoint* point, Int_t iPoint) { TVector3 v1,v2,dv; point->PositionIn(v1); point->PositionOut(v2); dv = v2-v1; Int_t detectorId = point->GetDetectorID(); CbmMuchModule* module = fGeoScheme->GetModuleByDetId(detectorId); if (fAlgorithm==0){ // Simple digitization TVector3 v = 0.5*(v1+v2); CbmMuchPad* pad = 0; if (module->GetDetectorType()==1){ CbmMuchModuleGemRectangular* module1 = (CbmMuchModuleGemRectangular*) module; pad = module1->GetPad(v[0],v[1]); if (pad) printf("x0=%f,y0=%f\n",pad->GetX(),pad->GetY()); } else if (module->GetDetectorType()==3){ CbmMuchModuleGemRadial* module3 = (CbmMuchModuleGemRadial*) module; pad = module3->GetPad(v[0],v[1]); } if (!pad) return kFALSE; AddCharge(pad,fQMax,iPoint,point->GetTime(),0); return kTRUE; } // Start of advanced digitization Int_t nElectrons = Int_t(GetNPrimaryElectronsPerCm(point)*dv.Mag()); if (nElectrons<0) return kFALSE; Double_t time = -1; // TODO while(time < 0) time = point->GetTime() + gRandom->Gaus(0, fDTime); if (module->GetDetectorType()==1) { CbmMuchModuleGemRectangular* module1 = (CbmMuchModuleGemRectangular*) module; map firedSectors; for (Int_t i=0;iRndm(); Double_t driftTime = (1-aL)*fTotalDriftTime; TVector3 ve = v1 + dv*aL; UInt_t ne = GasGain(); Double_t x = ve.X(); Double_t y = ve.Y(); Double_t x1 = x-fSpotRadius; Double_t x2 = x+fSpotRadius; Double_t y1 = y-fSpotRadius; Double_t y2 = y+fSpotRadius; Double_t s = 4*fSpotRadius*fSpotRadius; firedSectors[module1->GetSector(x1,y1)]=0; firedSectors[module1->GetSector(x1,y2)]=0; firedSectors[module1->GetSector(x2,y1)]=0; firedSectors[module1->GetSector(x2,y2)]=0; for (map::iterator it = firedSectors.begin(); it!= firedSectors.end(); it++) { CbmMuchSector* sector = (*it).first; if (!sector) continue; for (Int_t iPad=0;iPadGetNChannels();iPad++){ CbmMuchPad* pad = sector->GetPadByChannelIndex(iPad); Double_t xp0 = pad->GetX(); Double_t xpd = pad->GetDx()/2.; Double_t xp1 = xp0-xpd; Double_t xp2 = xp0+xpd; if (x1>xp2 || x2GetY(); Double_t ypd = pad->GetDy()/2.; Double_t yp1 = yp0-ypd; Double_t yp2 = yp0+ypd; if (y1>yp2 || y2xp1 ? (x2yp1 ? (y2GetDetectorType()==3) { CbmMuchModuleGemRadial* module3 = (CbmMuchModuleGemRadial*) module; CbmMuchSectorRadial* sFirst = (CbmMuchSectorRadial*) module3->GetSectorByIndex(0); CbmMuchSectorRadial* sLast = (CbmMuchSectorRadial*) module3->GetSectorByIndex(module3->GetNSectors()-1); Double_t rMin = sFirst->GetR1(); Double_t rMax = sLast->GetR2(); for (Int_t i=0;iRndm(); Double_t driftTime = (1-aL)*fTotalDriftTime; TVector3 ve = v1 + dv*aL; UInt_t ne = GasGain(); Double_t r = ve.Perp(); Double_t phi = ve.Phi(); Double_t r1 = r-fSpotRadius; Double_t r2 = r+fSpotRadius; Double_t phi1 = phi-fSpotRadius/r; Double_t phi2 = phi+fSpotRadius/r; if (r1rMin) { AddCharge(sFirst,UInt_t(ne*(r2-rMin)/(r2-r1)),iPoint,time,driftTime,phi1,phi2); continue; } if (r1rMax) { AddCharge(sLast,UInt_t(ne*(rMax-r1)/(r2-r1)),iPoint,time,driftTime,phi1,phi2); continue; } CbmMuchSectorRadial* s1 = module3->GetSectorByRadius(r1); CbmMuchSectorRadial* s2 = module3->GetSectorByRadius(r2); if (s1==s2) AddCharge(s1,ne,iPoint,time,driftTime,phi1,phi2); else { AddCharge(s1,UInt_t(ne*(s1->GetR2()-r1)/(r2-r1)),iPoint,time,driftTime,phi1,phi2); AddCharge(s2,UInt_t(ne*(r2-s2->GetR1())/(r2-r1)),iPoint,time,driftTime,phi1,phi2); } } } return kTRUE; } // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- Int_t CbmMuchDigitizeGem::GasGain() { Double_t gasGain = -fMeanGasGain * TMath::Log(1 - gRandom->Rndm()); if (gasGain < 0.) gasGain = 1e6; return (Int_t) gasGain; } // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- Double_t CbmMuchDigitizeGem::Sigma_n_e(Double_t Tkin, Double_t mass) { Double_t logT; TF1 fPol6("fPol6","pol6",-5,10); if (mass < 0.1) { logT = log(Tkin * 0.511 / mass); if (logT > 9.21034) logT = 9.21034; if (logT < min_logT_e) logT = min_logT_e; return fPol6.EvalPar(&logT,sigma_e); } else if (mass >= 0.1 && mass < 0.2) { logT = log(Tkin * 105.658 / mass); if (logT > 9.21034) logT = 9.21034; if (logT < min_logT_mu) logT = min_logT_mu; return fPol6.EvalPar(&logT,sigma_mu); } else { logT = log(Tkin * 938.272 / mass); if (logT > 9.21034) logT = 9.21034; if (logT < min_logT_p) logT = min_logT_p; return fPol6.EvalPar(&logT,sigma_p); } } // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- Double_t CbmMuchDigitizeGem::MPV_n_e(Double_t Tkin, Double_t mass) { Double_t logT; TF1 fPol6("fPol6","pol6",-5,10); if (mass < 0.1) { logT = log(Tkin * 0.511 / mass); if (logT > 9.21034) logT = 9.21034; if (logT < min_logT_e) logT = min_logT_e; return fPol6.EvalPar(&logT,mpv_e); } else if (mass >= 0.1 && mass < 0.2) { logT = log(Tkin * 105.658 / mass); if (logT > 9.21034) logT = 9.21034; if (logT < min_logT_mu) logT = min_logT_mu; return fPol6.EvalPar(&logT,mpv_mu); } else { logT = log(Tkin * 938.272 / mass); if (logT > 9.21034) logT = 9.21034; if (logT < min_logT_p) logT = min_logT_p; return fPol6.EvalPar(&logT,mpv_p); } } // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- Double_t CbmMuchDigitizeGem::GetNPrimaryElectronsPerCm(CbmMuchPoint* point){ Int_t trackID = point->GetTrackID(); if (trackID < 0) return -1; CbmMCTrack* mcTrack; if (!fEpoch) { mcTrack = (CbmMCTrack*) fMCTracks->At(trackID); } else { Int_t eventId = point->GetEventID(); if (eventId!=fChainEventId) { fChainEventId=eventId; fMcChain->GetEntry(eventId); } mcTrack = (CbmMCTrack*) fMCTracks->At(trackID); } if (!mcTrack) return -1; Int_t pdgCode = mcTrack->GetPdgCode(); TParticlePDG *particle = TDatabasePDG::Instance()->GetParticle(pdgCode); // Assign proton hypothesis for unknown particles if (!particle) particle = TDatabasePDG::Instance()->GetParticle(2212); if (TMath::Abs(particle->Charge()) < 0.1) return -1; Double_t m = particle->Mass(); TLorentzVector p; p.SetXYZM(point->GetPx(),point->GetPy(),point->GetPz(),m); Double_t Tkin = p.E()-m; // kinetic energy of the particle Double_t sigma = CbmMuchDigitizeGem::Sigma_n_e(Tkin,m); // sigma for Landau distribution Double_t mpv = CbmMuchDigitizeGem::MPV_n_e(Tkin,m); // most probable value for Landau distr. Double_t n = gRandom->Landau(mpv, sigma); while (n > 5e4) n = gRandom->Landau(mpv, sigma); // restrict Landau tail to increase performance return m<0.1 ? n/l_e : n/l_not_e; } // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- Bool_t CbmMuchDigitizeGem::AddCharge(CbmMuchSectorRadial* s,UInt_t ne, Int_t iPoint, Double_t time, Double_t driftTime, Double_t phi1, Double_t phi2){ CbmMuchPadRadial* pad1 = s->GetPadByPhi(phi1); CbmMuchPadRadial* pad2 = s->GetPadByPhi(phi2); if (pad1==pad2) AddCharge(pad1,ne,iPoint,time,driftTime); else { Double_t phi = pad1 ? pad1->GetPhi2() : pad2 ? pad2->GetPhi1() : 0; UInt_t pad1_ne = UInt_t(ne*(phi-phi1)/(phi2-phi1)); AddCharge(pad1,pad1_ne ,iPoint,time,driftTime); AddCharge(pad2,ne-pad1_ne,iPoint,time,driftTime); } return kFALSE; } // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- void CbmMuchDigitizeGem::AddCharge(CbmMuchPad* pad, UInt_t charge, Int_t iPoint, Double_t time, Double_t driftTime){ if (!pad) return; CbmMuchDigiMatch* match = pad->GetMatch(); CbmMuchDigi* digi = pad->GetDigi(); if (match->GetNPoints()==0) { digi->SetTime(time); digi->SetDeadTime(fDeadTime); } if (time>digi->GetTime()+digi->GetDeadTime()) { AddDigi(pad); digi->SetTime(time); digi->SetDeadTime(fDeadTime); } match->AddCharge(iPoint,charge,driftTime); } // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- Bool_t CbmMuchDigitizeGem::AddDigi(CbmMuchPad* pad) { CbmMuchDigiMatch* match = pad->GetMatch(); CbmMuchDigi* digi = pad->GetDigi(); // Add noise if (fMeanNoise){ Double_t rndGaus = TMath::Abs(fMeanNoise * gRandom->Gaus()); UInt_t noiseCharge = (UInt_t) rndGaus; match->AddCharge(-1,noiseCharge); } // Check for threshold if (match->GetTotalCharge() < fQThreshold) { match->Reset(); return kFALSE; } Int_t adc = match->GetTotalCharge() * fNADCChannels/ fQMax; digi->SetADCCharge(adc > fNADCChannels ? fNADCChannels-1 : adc); new ((*fDigis)[fDigis->GetEntriesFast()]) CbmMuchDigi(digi); new ((*fDigiMatches)[fDigiMatches->GetEntriesFast()]) CbmMuchDigiMatch(match); match->Reset(); return kTRUE; } // ------------------------------------------------------------------------- ClassImp(CbmMuchDigitizeGem)