/** CbmLitTGeoTrackPropagator.cxx * @author Andrey Lebedev * @since 2007 * @version 1.0 **/ #include "propagation/CbmLitTGeoTrackPropagator.h" #include "base/CbmLitDefaultSettings.h" #include "data/CbmLitTrackParam.h" #include "interface/CbmLitTrackExtrapolator.h" #include "propagation/CbmLitTGeoNavigator.h" #include "propagation/CbmLitMaterialEffectsImp.h" #include "propagation/CbmLitMaterialInfo.h" #include "utils/CbmLitMath.h" #include "utils/CbmLitMatrixMath.h" #include #include #include CbmLitTGeoTrackPropagator::CbmLitTGeoTrackPropagator( TrackExtrapolatorPtr extrapolator): CbmLitTrackPropagator("CbmLitTGeoTrackPropagator"), fExtrapolator(extrapolator) { fNavigator = GeoNavigatorPtr(new CbmLitTGeoNavigator()); fMaterial = MaterialEffectsPtr(new CbmLitMaterialEffectsImp()); } CbmLitTGeoTrackPropagator::~CbmLitTGeoTrackPropagator() { } LitStatus CbmLitTGeoTrackPropagator::Initialize() { return kLITSUCCESS; } LitStatus CbmLitTGeoTrackPropagator::Finalize() { return kLITSUCCESS; } LitStatus CbmLitTGeoTrackPropagator::Propagate( const CbmLitTrackParam* parIn, CbmLitTrackParam* parOut, myf zOut, int pdg, std::vector* F) { *parOut = *parIn; return Propagate(parOut, zOut, pdg, F); } LitStatus CbmLitTGeoTrackPropagator::Propagate( CbmLitTrackParam* par, myf zOut, int pdg, std::vector* F) { if (!IsParCorrect(par)) { return kLITERROR; } myf zIn = par->GetZ(); myf dz = zOut - zIn; if(std::fabs(dz) < lit::MINIMUM_PROPAGATION_DISTANCE) { return kLITSUCCESS; } //Check whether upstream or downstream //TODO check upstream/downstream bool downstream = dz > 0; if (F != NULL) { F->assign(25, 0.); (*F)[0] = 1.; (*F)[6] = 1.; (*F)[12] = 1.; (*F)[18] = 1.; (*F)[24] = 1.; } int nofSteps = int(std::abs(dz) / lit::MAXIMUM_PROPAGATION_STEP_SIZE); myf stepSize; if (nofSteps == 0) { stepSize = dz; } else { stepSize = lit::MAXIMUM_PROPAGATION_STEP_SIZE; } myf z = zIn; // std::cout << "Propagation: zIn=" << zIn << " zOut=" << zOut << " stepSize=" << stepSize << " nofSteps=" << nofSteps << std::endl; //Loop over steps + additional step to propagate to virtual plane at zOut for (int iStep = 0; iStep < nofSteps + 1; iStep++) { if (!IsParCorrect(par)) { // std::cout << "-E- CbmLitTGeoTrackPropagator::Propagate: incorrect track parameters" << std::endl; return kLITERROR; } // update current z position if (iStep != nofSteps) { z += stepSize; } else { z = zOut; } //Get intersections with the materials for this step std::vector inter; if (fNavigator->FindIntersections(par, z, inter) == kLITERROR) { // std::cout << "-E- CbmLitTGeoTrackPropagator::Propagate: navigation failed" << std::endl; return kLITERROR; } // std::cout << iStep << " z0=" << par->GetZ() << " z1=" << z << " nofInt=" << inter.size() << std::endl; //Loop over the materials for(unsigned int iMat = 0; iMat < inter.size() ; iMat++) { CbmLitMaterialInfo mat = inter[iMat]; // check if track parameters are correct if (!IsParCorrect(par)) { // std::cout << "-E- CbmLitTGeoTrackPropagator::Propagate: incorrect track parameters" << std::endl; return kLITERROR; } std::vector* Fnew = NULL; if (F != NULL) { Fnew = new std::vector(25, 0.); } // extrapolate to the next boundary if (fExtrapolator->Extrapolate(par, mat.GetZpos(), Fnew) == kLITERROR) { // std::cout << "-E- CbmLitTGeoTrackPropagator::Propagate: extrapolation failed" << std::endl; return kLITERROR; } // update transport matrix if (F != NULL) { UpdateF(*F, *Fnew); } delete Fnew; // add material effects // if (mat.GetRL() < 2000) fMaterial->Update(par, &mat, pdg, downstream); // std::cout << " " << iStep << " " << iMat << " " << mat.ToString(); // std::cout << " " << iStep << " " << iMat << " " << par->ToString(); } } // std::cout << "OUT " << par->ToString(); if (!IsParCorrect(par)) { return kLITERROR; } else { return kLITSUCCESS; } } void CbmLitTGeoTrackPropagator::UpdateF( std::vector& F, const std::vector& newF) { std::vector A(25); Mult25(newF, F, A); F.assign(A.begin(), A.end()); } bool CbmLitTGeoTrackPropagator::IsParCorrect( const CbmLitTrackParam* par) { myf maxSlope = 5.; myf minSlope = 1e-6; myf maxQp = 1000.; // p = 10 MeV if (std::abs(par->GetTx()) > maxSlope || std::abs(par->GetTy()) > maxSlope || std::abs(par->GetTx()) < minSlope || std::abs(par->GetTy()) < minSlope || std::abs(par->GetQp()) > maxQp) { return false; } if (std::isnan(par->GetX()) || std::isnan(par->GetY()) || std::isnan(par->GetTx()) || std::isnan(par->GetTy()) || std::isnan(par->GetQp())) { return false; } return true; }