void run_sim(Int_t nEvents = 700) { Int_t iVerbose = 0; TString script = TString(gSystem->Getenv("SCRIPT")); TString parDir = TString(gSystem->Getenv("VMCWORKDIR")) + TString("/parameters"); gRandom->SetSeed(10); TString inFile = "", parFile = "", outFile =""; TString caveGeom = "", targetGeom = "", pipeGeom = "", magnetGeom = "", mvdGeom = "", mvdGeom = "",stsGeom = "", richGeom= "", trdGeom = "", tofGeom = "", ecalGeom = ""; TString fieldMap = ""; TString electrons = ""; // If "yes" than primary electrons will be generated Int_t NELECTRONS = 0; Int_t NPOSITRONS = 0; TString urqmd = ""; // If "yes" than UrQMD will be used as background TString pluto = ""; // If "yes" PLUTO particles will be embedded TString plutoFile = ""; TString plutoParticle = ""; // Magnetic field Double_t fieldZ = 50.; // field centre z position Double_t fieldScale = 1.0; // field scaling factor if (script != "yes") { inFile = "/d/cbm02/slebedev/urqmd/auau/25gev/centr/urqmd.auau.25gev.centr.0007.ftn14"; parFile = "/d/cbm02/slebedev/rich/JUL09/auau.25gev.centr.0000.params.root"; outFile = "/d/cbm02/slebedev/rich/JUL09/auau.25gev.centr.0000.mc.root"; caveGeom = "cave.geo"; targetGeom = "target_au_250mu.geo"; pipeGeom = "pipe_standard.geo"; magnetGeom = "magnet_electron_standard.geo"; mvdGeom = "mvd_standard.geo"; mvdGeom = ""; stsGeom = "sts_standard.geo"; richGeom = "rich_standard.geo"; trdGeom = "trd_standard_dec10.geo"; tofGeom = "tof_standard.geo"; //ecalGeom = "ecal_FastMC.geo"; fieldMap = "field_electron_standard"; electrons = "yes"; NELECTRONS = 5; NPOSITRONS = 5; urqmd = "yes"; pluto = "no"; plutoFile = ""; } else { inFile = TString(gSystem->Getenv("INFILE")); outFile = TString(gSystem->Getenv("MCFILE")); parFile = TString(gSystem->Getenv("PARFILE")); caveGeom = TString(gSystem->Getenv("CAVEGEOM")); targetGeom = TString(gSystem->Getenv("TARGETGEOM")); pipeGeom = TString(gSystem->Getenv("PIPEGEOM")); //shieldGeom = TString(gSystem->Getenv("SHIELDGEOM")); mvdGeom = TString(gSystem->Getenv("MVDGEOM")); stsGeom = TString(gSystem->Getenv("STSGEOM")); muchGeom = TString(gSystem->Getenv("MUCHGEOM")); richGeom = TString(gSystem->Getenv("RICHGEOM")); trdGeom = TString(gSystem->Getenv("TRDGEOM")); tofGeom = TString(gSystem->Getenv("TOFGEOM")); ecalGeom = TString(gSystem->Getenv("ECALGEOM")); fieldMap = TString(gSystem->Getenv("FIELDMAP")); magnetGeom = TString(gSystem->Getenv("MAGNETGEOM")); Int_t NELECTRONS = TString(gSystem->Getenv("NELECTRONS")).Atoi(); Int_t NPOSITRONS = TString(gSystem->Getenv("NPOSITRONS")).Atoi(); electrons = TString(gSystem->Getenv("ELECTRONS")); urqmd = TString(gSystem->Getenv("URQMD")); pluto = TString(gSystem->Getenv("PLUTO")); plutoFile = TString(gSystem->Getenv("PLUTOFILE")); plutoParticle = TString(gSystem->Getenv("PLUTOPARTICLE")); fieldScale = TString(gSystem->Getenv("FIELDMAPSCALE")).Atof(); } gDebug = 0; TStopwatch timer; timer.Start(); gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C"); basiclibs(); gROOT->LoadMacro("$VMCWORKDIR/macro/rich/cbmlibs.C"); cbmlibs(); FairRunSim* fRun = new FairRunSim(); fRun->SetName("TGeant3"); // Transport engine fRun->SetOutputFile(outFile); // Output file FairRuntimeDb* rtdb = fRun->GetRuntimeDb(); fRun->SetMaterials("media.geo"); // Materials // ----- Create detectors and passive volumes ------------------------- if ( caveGeom != "" ) { FairModule* cave = new CbmCave("CAVE"); cave->SetGeometryFileName(caveGeom); fRun->AddModule(cave); } if ( pipeGeom != "" ) { FairModule* pipe = new CbmPipe("PIPE"); pipe->SetGeometryFileName(pipeGeom); fRun->AddModule(pipe); } if ( targetGeom != "" ) { FairModule* target = new CbmTarget("Target"); target->SetGeometryFileName(targetGeom); fRun->AddModule(target); } if ( magnetGeom != "" ) { FairModule* magnet = new CbmMagnet("MAGNET"); magnet->SetGeometryFileName(magnetGeom); fRun->AddModule(magnet); } if ( mvdGeom != "" ) { FairDetector* mvd = new CbmMvd("MVD", kTRUE); mvd->SetGeometryFileName(mvdGeom); fRun->AddModule(mvd); } if ( stsGeom != "" ) { FairDetector* sts = new CbmSts("STS", kTRUE); sts->SetGeometryFileName(stsGeom); fRun->AddModule(sts); } if ( richGeom != "" ) { FairDetector* rich = new CbmRich("RICH", kTRUE); rich->SetGeometryFileName(richGeom); fRun->AddModule(rich); } if ( trdGeom != "" ) { FairDetector* trd = new CbmTrd("TRD",kTRUE ); trd->SetGeometryFileName(trdGeom); fRun->AddModule(trd); } if ( tofGeom != "" ) { FairDetector* tof = new CbmTof("TOF", kTRUE); tof->SetGeometryFileName(tofGeom); fRun->AddModule(tof); } // if ( ecalGeom != "" ) { // FairDetector* ecal = new CbmEcal("ECAL", kTRUE, ecalGeom.Data()); // fRun->AddModule(ecal); // } // ----- Create magnetic field ---------------------------------------- if (fieldMap == "field_electron_standard" ) CbmFieldMap* magField = new CbmFieldMapSym2(fieldMap); else if (fieldMap == "field_muon_standard" ) CbmFieldMap* magField = new CbmFieldMapSym2(fieldMap); else if (fieldMap == "FieldMuonMagnet" ) CbmFieldMap* magField = new CbmFieldMapSym3(fieldMap); else { cout << "===> ERROR: Unknown field map " << fieldMap << endl; exit; } magField->SetPosition(0., 0., fieldZ); magField->SetScale(fieldScale); fRun->SetField(magField); // ----- Create PrimaryGenerator -------------------------------------- FairPrimaryGenerator* primGen = new FairPrimaryGenerator(); if (urqmd == "yes"){ FairUrqmdGenerator* urqmdGen = new FairUrqmdGenerator(inFile); primGen->AddGenerator(urqmdGen); } //add electrons if (electrons == "yes"){ FairBoxGenerator* boxGen1 = new FairBoxGenerator(11, NPOSITRONS); boxGen1->SetPtRange(0.,3.); boxGen1->SetPhiRange(0.,360.); boxGen1->SetThetaRange(2.5,25.); boxGen1->SetCosTheta(); boxGen1->Init(); primGen->AddGenerator(boxGen1); FairBoxGenerator* boxGen2 = new FairBoxGenerator(-11, NELECTRONS); boxGen2->SetPtRange(0.,3.); boxGen2->SetPhiRange(0.,360.); boxGen2->SetThetaRange(2.5,25.); boxGen2->SetCosTheta(); boxGen2->Init(); primGen->AddGenerator(boxGen2); } if (pluto == "yes") { FairPlutoGenerator *plutoGen= new FairPlutoGenerator(plutoFile); primGen->AddGenerator(plutoGen); } fRun->SetGenerator(primGen); fRun->Init(); if (pluto == "yes" && plutoParticle != "rho0"){ Float_t bratioEta[6]; Int_t modeEta[6]; TGeant3* gMC3 = (TGeant3*) gMC; for (Int_t kz = 0; kz < 6; ++kz) { bratioEta[kz] = 0.; modeEta[kz] = 0; } Int_t ipa = 17; bratioEta[0] = 39.38; //2gamma bratioEta[1] = 32.20; //3pi0 bratioEta[2] = 22.70; //pi+pi-pi0 bratioEta[3] = 4.69; //pi+pi-gamma bratioEta[4] = 0.60; //e+e-gamma bratioEta[5] = 4.4e-2; //pi02gamma modeEta[0] = 101; //2gamma modeEta[1] = 70707; //3pi0 modeEta[2] = 80907; //pi+pi-pi0 modeEta[3] = 80901; //pi+pi-gamma modeEta[4] = 30201; //e+e-gamma modeEta[5] = 10107; //pi02gamma gMC3->Gsdk(ipa, bratioEta, modeEta); Float_t bratioPi0[6]; Int_t modePi0[6]; for (Int_t kz = 0; kz < 6; ++kz) { bratioPi0[kz] = 0.; modePi0[kz] = 0; } ipa = 7; bratioPi0[0] = 98.798; bratioPi0[1] = 1.198; modePi0[0] = 101; modePi0[1] = 30201; gMC3->Gsdk(ipa, bratioPi0, modePi0); Int_t t = time(NULL); TRandom *rnd = new TRandom(t); gMC->SetRandom(rnd); } // ----- Runtime database --------------------------------------------- CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar"); fieldPar->SetParameters(magField); fieldPar->setChanged(); fieldPar->setInputVersion(fRun->GetRunId(),1); Bool_t kParameterMerged = kTRUE; FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged); parOut->open(parFile.Data()); rtdb->setOutput(parOut); rtdb->saveOutput(); rtdb->print(); // ----- Start run ---------------------------------------------------- fRun->Run(nEvents); // ----- Finish ------------------------------------------------------- timer.Stop(); Double_t rtime = timer.RealTime(); Double_t ctime = timer.CpuTime(); cout << endl << endl; cout << "Macro finished succesfully." << endl; cout << "Output file is " << outFile << endl; cout << "Parameter file is " << parFile << endl; cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << endl << endl; cout << " Test passed" << endl; cout << " All ok " << endl; exit(0); }