#input normalization 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 #output normalization 1 0 #neurons weights 0 0 0 0 0 0 0 0 -34.1803 -34.4376 -34.1469 -34.9998 -34.179 -34.6976 -34.732 -35 -34.8685 -34.9627 -34.9364 -34.7725 -34.7733 -36.6525 -34.5513 -34.2483 -1.00446 #synapses weights 4.72287 5.57952 14.1881 7.42117 7.22886 4.19528 4.2655 -7.02078 4.51625 5.2968 13.9026 7.18667 7.0265 3.99838 4.06794 -7.2347 4.75113 5.61671 14.2253 7.45097 7.25403 4.21966 4.29005 -6.9938 3.92384 4.1181 12.8881 7.32627 7.90083 4.99559 5.03493 -6.7037 4.57208 5.00705 13.7521 7.71296 7.97641 5.0306 5.10048 -6.41864 4.08517 4.32857 13.1304 7.55635 8.11431 5.21018 5.25656 -6.45771 4.05658 4.30909 13.1066 7.50042 8.037 5.12912 5.17625 -6.52484 3.92096 4.10901 12.8818 7.33773 7.92355 5.02012 5.05889 -6.68669 3.98882 4.17034 12.9667 7.49573 8.12516 5.23008 5.26889 -6.4989 3.93296 4.10057 12.8885 7.41792 8.04956 5.15377 5.19079 -6.58191 3.94784 4.11784 12.9089 7.44297 8.077 5.18188 5.21923 -6.55401 4.04762 4.25112 13.0528 7.55729 8.16896 5.27225 5.31385 -6.4389 4.04714 4.25044 13.0521 7.55685 8.16872 5.27203 5.3136 -6.4393 2.68518 3.01453 11.6509 5.61287 5.87884 2.89824 2.91532 -8.69653 4.2896 4.65272 13.3942 7.47242 7.81375 4.87613 4.93517 -6.64461 4.51996 4.94159 13.6859 7.66751 7.94477 5.00036 5.06824 -6.46176 -4.32916 -3.79774 -4.39663 1.58861 -0.499934 1.48209 1.32544 1.65732 1.91743 1.92087 1.93549 1.82743 1.82852 -0.843675 -0.00714129 -0.42011