import ROOT rfile=ROOT.TFile("inMassKaon.root","READ") hist=rfile.FindObjectAny("InvMassKaon_woCuts") #hist=rfile.Get("PWG3_D2H_DStarSpectra_bhohlweg/DStarAll_bhohlweg/InvMassKaon_woCuts") ROOT.gROOT.ProcessLine(".x rootlogon.C") ROOT.gROOT.ProcessLine('gROOT->SetStyle("Plain")') x=ROOT.RooRealVar('x','x',0.48,0.52) mu=ROOT.RooRealVar('mu_n','mu narrow',0.5,0.48,0.52) sigma=ROOT.RooRealVar('sigma_n','sigma narrow',0.005,0,0.1) mu_b=ROOT.RooRealVar('mu_b','mu_b',0.5,0.48,0.52) sigma_b=ROOT.RooRealVar('sigma_b','sigma_b',0.08,0,0.1) frac=ROOT.RooRealVar("gaus_frac","fraction",0.5,0,1) pdf_n=ROOT.RooGaussian('gaus_n','gaus_n',x,mu,sigma) pdf_b=ROOT.RooGaussian('gaus_b','gaus_b',x,mu_b,sigma_b) pdf=ROOT.RooAddPdf("gaus","gaus",pdf_n,pdf_b,frac) varset=ROOT.RooArgSet() varset.add(x) #dataset for unbinned tuple=ROOT.TNtuple('gauss','','x') #dataset=ROOT.RooDataSet('dataset','dataset',tuple,varset) dataset=ROOT.RooDataHist("dh","dh",ROOT.RooArgList(x),hist) #here the fit happens: pdf.fitTo(dataset) #the plotting is done here h1=x.frame() dataset.plotOn(h1) pdf.plotOn(h1,ROOT.RooFit.LineColor(ROOT.kViolet)) c1=ROOT.TCanvas() h1.Draw() #c2=ROOT.TCanvas() #hist.Draw() u=raw_input("done?")