#include using std::cout; using std::cerr; using std::cin; using std::endl; #include using std::valarray; #include using std::vector; #include using std::string; #include using std::list; #include #include using std::fstream; #include using std::pair; #include using std::map; //#include #include "TVector3.h" #include "TRandom.h" #include "TRotation.h" #include "Math/Vector3D.h" using ROOT::Math::XYZVector; #include "Math/Point3D.h" using ROOT::Math::XYZPoint; #include "Math/Transform3D.h" using ROOT::Math::Transform3D; #include "Math/RotationX.h" using ROOT::Math::RotationX; #include "Math/RotationY.h" using ROOT::Math::RotationY; #include "Math/RotationZ.h" using ROOT::Math::RotationZ; #include "Math/Rotation3D.h" using ROOT::Math::Rotation3D; #include "DrcPhoton.h" #include "DrcOptReflAbs.h" #include "DrcSurfAbs.h" #include "DrcSurfPolyFlat.h" #include "DrcOptReflSilver.h" #include "DrcOptMatAbs.h" #include "DrcOptMatLithotecQ0.h" #include "DrcOptDev.h" #include "DrcOptDevSys.h" #include "DrcOptVol.h" #include "DrcOptPixel.h" #include "DrcOptMirror.h" #include "DrcOptDevManager.h" int main() { // Example for a simple bar with screen (photon detection) and mirror. int verbosity = 3; // 0=quiet, 1=constructors,2=member,3=functionality // 4=photons, 5=everything. // 8 points define a bar XYZPoint p1(-10.0, +5.0, 0); // p5----------p8 XYZPoint p2(-10.0, -5.0, 0); // /| /| XYZPoint p3(+10.0, -5.0, 0); // / | / | XYZPoint p4(+10.0, +5.0, 0); // / p6-------/--p7 // / / / / // / / / / // / / / / // / / / / XYZPoint p5(-10.0, +5.0, -40); // p1---------p4 / XYZPoint p6(-10.0, -5.0, -40); // | / | / XYZPoint p7(+10.0, -5.0, -40); // |/ |/ XYZPoint p8(+10.0, +5.0, -40); // p2---------p3 // Define from points 6 surfaces of the bar. The points have to be given in // the sequence going around the surface, clock- or counterclock-wise. // There are 2 additional surfaces, a mirror and a screen. // How to produce surfaces by shift and rotate operation is for sake of clearness // not shown here, but in one of the other examples. // Declare flat surfaces with arbitrary number of points. DrcSurfPolyFlat a1,a2,a3,a4,a5,a6; a1.setVerbosity(verbosity); a1.addPoint(p1); a1.addPoint(p2); a1.addPoint(p3); a1.addPoint(p4); a1.setName("adown"); a2.setVerbosity(verbosity); a2.addPoint(p2); a2.addPoint(p6); a2.addPoint(p7); a2.addPoint(p3); a2.setName("aside1"); a3.setVerbosity(verbosity); a3.addPoint(p1); a3.addPoint(p5); a3.addPoint(p6); a3.addPoint(p2); a3.setName("aside2"); a4.setVerbosity(verbosity); a4.addPoint(p4); a4.addPoint(p3); a4.addPoint(p7); a4.addPoint(p8); a4.setName("aside3"); a5.setVerbosity(verbosity); a5.addPoint(p1); a5.addPoint(p4); a5.addPoint(p8); a5.addPoint(p5); a5.setName("aside4"); a6.setVerbosity(verbosity); a6.addPoint(p8); a6.addPoint(p7); a6.addPoint(p6); a6.addPoint(p5); a6.setName("aup"); DrcSurfPolyFlat as; as = a6; as.setName("ascreen"); as.setPrintColor(2); // root red // A mirror has two sides, since behind a dichroic mirror a volume or screen // can follow. DrcSurfPolyFlat amf,amb; DrcOptReflSilver refl; amf = a1; amf.setReflectivity(refl); amf.setName("amirror_front"); amf.setPrintColor(4); amb = a1; amb.setName("amirror_back"); amb.setPrintColor(4); // create a volume consiting of surfaces // create a material the bar will consist of DrcOptVol bar; DrcOptMatLithotecQ0 quartz; bar.setVerbosity(verbosity); bar.setOptMaterial(quartz); bar.addSurface(a1); bar.addSurface(a2); bar.addSurface(a3); bar.addSurface(a4); bar.addSurface(a5); bar.addSurface(a6); bar.setName("bar"); // create a screen (simplified photon detector) where photons end and // get the status Drc::Measured (no further propagation). For this you need // one single plane. DrcOptPixel screen; screen.setName("screen"); screen.addSurface(as); screen.setVerbosity(verbosity); DrcOptMirror mirror; mirror.setFrontSurface(amf); mirror.setBackSurface(amb); mirror.setName("mirror"); mirror.setVerbosity(verbosity); // Build a optical system consisting out of several volumes, // mirrors and screens. // This layer has the advantage, that a device consisting out // of many equal subsystems // like a bar box, easily can be reproduced. // See one of the forth comming test examples. DrcOptDevSys opt_system; opt_system.setVerbosity(verbosity); opt_system.addDevice(bar); opt_system.addDevice(screen); opt_system.addDevice(mirror); // couple surface 1 of device 1 with surface 2 of device 2 // dev1 dev2 surf1 surf2 opt_system.coupleDevice("bar","screen","aup", "ascreen"); opt_system.coupleDevice("bar","mirror","adown","amirror_front"); // The manager must be created as pointer. It is created as singleton, that is only // one manager can exist per application. DrcOptDevManager* manager = new DrcOptDevManager(); manager->setVerbosity(verbosity); manager->addDeviceSystem(opt_system); fstream geo; geo.open("Geo.C",std::ios::out); geo<<"{"<SetRange(-50,-50,-50,50,50,50);"<SetView(0,90,90,i);"<print(geo); // // the intention is to play around with routines. // create a list of photons in bar XYZPoint pos(0,-10,-20); XYZVector dir(0,1,0); double beta = 0.99; bool photons_exist = manager->cerenkov(pos,dir,beta); // generate photons if (photons_exist) { manager->propagate(); // propagate photons } list list_photon = manager->photonList(); // get list // propagate writes to geo, that has finished, therefore, close geo geo<<"}"<SetMarkerStyle(20);"<SetMinimum(-100);"<SetMaximum(+100);"<Draw(\"POL\");"<::iterator iph; for(iph=list_photon.begin(); iph != list_photon.end(); ++iph) { if ((*iph).fate()==Drc::PhotMeasured) { icnt_measured++; double x = (*iph).direction().X(); double y = (*iph).direction().Y(); double z = (*iph).direction().Z(); double theta = atan2(sqrt(x*x+y*y),fabs(z)); double phi = atan2(y,x); double r = theta; double xx = r*cos(phi)*180/3.1415; double yy = r*sin(phi)*180/3.1415; scr<<" TMarker* t = new TMarker("<SetMarkerColor(" <<(*iph).colorNumber((*iph).wavelength()) <<");"<SetMarkerSize(0.7);"<Draw();"<