\section{Decay models} \label{sect:models} \index{models} This section lists the different decay models that has been implemented in EvtGen. It is strongly urged that all decays that are implemented are added to this list with, at least, a minimal description of what they are doing. The models are organized in alphabetical order here. Each model is briefly described with respect to what decays it can handle and what the arguments mean and one or more examples are given. For further examples of use please see the decay table, {\tt DECAY.DEC} \Model{BHADRONIC} \label{bhadronic} \Auth{Ryd} \Usage{P1 P2 ... PN}{JH JW;} \Expl This is an experimental model for hadronic $B$ decays. Until further developed this is not recommended to be used. For questions ask Anders Ryd. \Model{BTO3PI\_CP} \label{bto3picp} \Auth{Le Diberder, Versille} \Usage{P1 P2 P3}{dm alpha;} \Expl This model is for neutral B decays in $\pi^-\pi^+\pi^0$. Several resonances are taken into account: the $\rho(770)$, the $\rho(1450)$, and the $\rho(1700)$, the generator therefore implements the interferences between all different final states (e.g. $B^0 \rightarrow \rho^+(770) \pi^- \rightarrow \pi^+\pi^0\pi^-$ and $B^0 \rightarrow \rho^-(770) \pi^+ \rightarrow \pi^-\pi^0\pi^+$). Several Breit-Wigners descriptions are available. By default, the generator is initialized with relativistic Breit-Wigners according to the Kuhn-Santamaria model where the parameters have been fitted by Aleph with $e^+e^-$ and $\tau^+\tau^-$ data~\cite{AlephRho}. It uses a pole-compensation method to generate the events efficiently by taking into account the poles due to the Breit-Wigners of the $\rho$'s \cite{3piNote}. The generator returns the amplitudes for $B^0 \rightarrow 3\pi$, and $\overline{B^0} \rightarrow 3\pi$ for the kinematics of the generated final state. It makes use of values of Tree and Penguins amplitudes and phases which have been computed by the LPTHE using the factorization approximation and the Orsay quark model, on the basis of the Isospin relation (no ElectroWeak Penguins are included here, and the strong phases are set to zero).The $\rho^0\pi^0$ gets a very low branching ratio due to color-suppression \cite{3piBook}. \Example \noindent The example shows how to generate $B^0 \rightarrow \pi^-\pi^+\pi^0$. \begin{verbatim} Decay B0 1.000 pi- pi+ pi0 BTO3PI_CP dm alpha; Enddecay \end{verbatim} \Notes This routine makes use of a fortran routine to perform the actual calculation of the amplitude. \Model{CB3PI-MPP} \label{cbto3pimpp} \Auth{Le Diberder, Versill\'e} \Usage{P1 P2 P3}{dm alpha;} \Expl This model is for charged B decays in $\pi^{\pm}\pi^+\pi^-$. It is built on the same basis than the BTO3PI\_CP model, making also use of interferences between the three $\rho$ bands: $\rho(770)$, the $\rho(1450)$, and the $\rho(1700)$. The amplitudes are computed by the LPTHE. \Example \noindent The example shows how to generate $B^+ \rightarrow \pi^+\pi^+\pi^-$. \begin{verbatim} Decay B+ 1.000 pi+ pi+ pi- CB3PI-MPP dm alpha; Enddecay \end{verbatim} \Notes This routine makes use of a fortran routine to perform the actual calculation of the amplitude. \Model{CB3PI-P00} \label{cbto3pip00} \Auth{Le Diberder, Versill\'e} \Usage{P1 P2 P3}{dm alpha;} \Expl This model is for charged B decays in $\pi^{\pm}\pi^0\pi^0$. It is built on the same basis than the BTO3PI\_CP model, making also use of interferences between the three $\rho$ bands: $\rho(770)$, the $\rho(1450)$, and the $\rho(1700)$. The amplitudes are computed by the LPTHE. \Example \noindent The example shows how to generate $B^+ \rightarrow \pi^+\pi^0\pi^0$. \begin{verbatim} Decay B+ 1.000 pi+ pi0 pi0 CB3PI-P00 dm alpha; Enddecay \end{verbatim} \Notes This routine makes use of a fortran routine to perform the actual calculation of the amplitude. \Model{BTOKPIPI\_CP} \label{btoKpipicp} \Auth{ Le Diberder, Versill\'e} \Usage{P1 P2 P3}{dm alpha;} \Expl This model is for neutral B decays in $K \pi\pi$ (note that the $B^0$ decays in $K^+ \pi^- \pi^0$ and the $\overline{B^0}$ in $K^- \pi^+ \pi^0$). It generates interferences between different resonances: \begin{itemize} \item{} $ B^0 \rightarrow K^{*+} \pi^- $, with $K^{*+} \rightarrow K^+ \pi^0$, \item{} $ B^0 \rightarrow {K^{*0}} \pi^0 $, with ${K^{*0}} \rightarrow K^+ \pi^-$, \item{} $ B^0 \rightarrow K^- \rho^{+} $, with $\rho^{+} \rightarrow \pi^+ \pi^0$ \end{itemize} It also provides the amplitudes for the CP-conjugate channels $\overline{B^0} \rightarrow K^- \pi^+ \pi^0$. The Tree and Penguins amplitudes are computed by the LPTHE. \Example \noindent The example shows how to generate $B^0 \rightarrow K^+\pi^-\pi^0$. \begin{verbatim} Decay B0 1.000 K+ pi- pi0 BTOKPIPI_CP dm alpha; Enddecay \end{verbatim} \Notes This routine makes use of a fortran routine to perform the actual calculation of the amplitudes. \Model{BTO4PI\_CP} \label{bto4picp} \Auth{Ryd} \Usage{P1 P2 P3 P4}{dm alpha +8 amplitudes; } \Expl This model is for $B\rightarrow \pi^+\pi^-\pi^+\pi^-$. It implements the time dependence of the decay correctly depending on where in the dalitz plot you are. The amplitudes that needs to be specified are $B\rightarrow a_1^+ \pi^-$, $\bar B\rightarrow a_1^+ \pi^-$, $B\rightarrow a_2^+ \pi^-$, $\bar B\rightarrow a_2^+ \pi^-$, $B\rightarrow a_1^- \pi^+$, $\bar B\rightarrow a_1^- \pi^+$, $B\rightarrow a_2^- \pi^+$, and $\bar B\rightarrow a_2^- \pi^+$. \Example The example shows how to generate $B^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$. \begin{verbatim} Decay B0 1.000 pi+ pi- pi+ pi- BTP4PI_CP dm alpha 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0; Enddecay \end{verbatim} \Notes This routine is still developing. \Model{BTO2PI\_CP\_ISO} \label{bto2picpiso} \Auth{NK} \Usage{P1 P2}{beta dm $|A_{2}|$ $\varphi_{A_{2}}$ $|\overline{A}_{2}|$ $\varphi_{\overline{A}_{2}}$ $|A_{0}|$ $\varphi_{A_{0}}$ $|\overline{A}_{0}|$ $\varphi_{\overline{A}_{0}}$;} \Expl This model approaches the three $B \rightarrow \pi \pi$ modes from the point of view of isospin analysis. It is applicable to both the two $B^{0}$ ($\overline{B}^{0}$) modes, in which case it takes into account mixing, and to the $B^{+}$ ($B^{-}$) mode, as all three modes should indeed be treated together in this approach. Following the conventions of Lipkin, Nir, Quinn, and Snyder (Phys. Rev. D{\bf 44}, 1454 (1991)), the various decay amplitudes can be written as follows: \begin{equation} A(B^{+} \rightarrow \pi^{+} \pi^{0}) \equiv A^{+0} = 3\,A_{2} \end{equation} \begin{equation} A(B^{0} \rightarrow \pi^{+} \pi^{-}) \equiv \sqrt{\frac{1}{2}} \,A^{+-} = A_{2}\,- \,A_{0} \end{equation} \begin{equation} A(B^{0} \rightarrow \pi^{0} \pi^{0}) \equiv A^{00} = 2\,A_{2}\, +\,A_{0}, \end{equation} where $A_{2}$ is the amplitude for $I_{f}$ = 2 states (tree only), and $A_{0}$, for $I_{f}$ = 0 states (where both tree and penguin contribute). The model's parameters are: \begin{itemize} \item beta = corresponding CKM angle \item dm = $B^{0} \overline{B}^{0}$ mass difference ($\approx 0.5 \times 10^{12} s^{-1}$). \item $|A_{2}|$, $\varphi_{A_{2}}$ = magnitude and phase of the corresponding amplitude \item $|\overline{A}_{2}|$, $\varphi_{\overline{A}_{2}}$ = magnitude and phase of the amplitude for the CP-conjugate process \item $|A_{0}|$, $\varphi_{A_{0}}$ = magnitude and phase of the corresponding amplitude \item $|\overline{A}_{0}|$, $\varphi_{\overline{A}_{0}}$ = magnitude and phase of the amplitude for the CP-conjugate process \end{itemize} \Example \begin{verbatim} Decay B0 1.000 pi+ pi- BT02PI_CP_ISO beta dm 1.0 gamma 1.0 -gamma 1.0 gamma 1.0 -gamma; Enddecay \end{verbatim} \Notes Precise numerical estimates for the amplitudes are not available at the moment. \Model{BTOKPI\_CP\_ISO} \label{btokpicpiso} \Auth{NK} \Usage{PI K}{beta dm $|U|$ $\varphi_{U}$ $|\overline{U}|$ $\varphi_{\overline{U}}$ $|V|$ $\varphi_{V}$ $|\overline{V}|$ $\varphi_{\overline{V}}$ $|W|$ $\varphi_{W}$ $|\overline{W}|$ $\varphi_{\overline{W}}$;} \Expl This model considers the four $B \rightarrow \pi K$ modes from the point of view of isospin analysis. It is applicable to both the two $B^{0}$ ($\overline{B}^{0}$) modes and to the two $B^{+}$ ($B^{-}$) modes, as all four modes should indeed be treated together in this approach. Following the conventions of Lipkin, Nir, Quinn, and Snyder (Phys. Rev. D{\bf 44}, 1454 (1991)), the various decay amplitudes can be written as follows: \begin{equation} A(B^{+} \rightarrow \pi^{0} K^{+}) \equiv A^{0+} = U\,-\,W \end{equation} \begin{equation} A(B^{+} \rightarrow \pi^{+} K^{0}) \equiv \sqrt{\frac{1}{2}} \,A^{+0} = V\,+\,W \end{equation} \begin{equation} A(B^{0} \rightarrow \pi^{-} K^{+}) \equiv \sqrt{\frac{1}{2}} \,A^{-+} = V\,-\,W \end{equation} \begin{equation} A(B^{0} \rightarrow \pi^{0} K^{0}) \equiv A^{00} = U\,+\,W, \end{equation} where $W$, $U$, and $V$ are linear combinations of the three independent amplitudes $A_{I_{t},I_{f}}$ for various transition ($I_{t}$) and final ($I_{f}$) isospins (please see the reference for more details). Note that both $U$ and $V$ are tree-only amplitudes, whereas $W$ includes both tree and penguin contributions. The model's parameters are: \begin{itemize} \item beta = corresponding CKM angle \item dm = $B^{0} \overline{B}^{0}$ mass difference ($\approx 0.5 \times 10^{12} s^{-1}$). \item $|U|$, $\varphi_{U}$ = magnitude and phase of the corresponding amplitude \item $|\overline{U}|$, $\varphi_{\overline{U}}$ = magnitude and phase of the amplitude for the CP-conjugate process \item $|V|$, $\varphi_{V}$ = magnitude and phase of the corresponding amplitude \item $|\overline{V}|$, $\varphi_{\overline{V}}$ = magnitude and phase of the amplitude for the CP-conjugate process \item $|W|$, $\varphi_{W}$ = magnitude and phase of the corresponding amplitude \item $|\overline{W}|$, $\varphi_{\overline{W}}$ = magnitude and phase of the amplitude for the CP-conjugate process \end{itemize} \Example \begin{verbatim} Decay B0 1.000 K+ pi- BTOKPI_CP_ISO beta dm 1.0 gamma 1.0 -gamma 1.0 gamma 1.0 -gamma 1.0 gamma 1.0 -gamma; Enddecay \end{verbatim} \Notes Precise numerical estimates for the amplitudes are not available at the moment. \Model{BTOXSGAMMA} \label{btoxsgamma} \Auth{ Francesca Di Lodovico, Jane Tinslay, Mark Ian Williams} \Usage{P1 P2}{model} or\\ \Usage{P1 P2}{ model F $m_B$ $m_b$ $\mu$ $\lambda_1$ $\delta$ z (number of intervals to\\ compute $\alpha_s$) (number of intervals tocompute the hadronic mass)} \Expl This model is for two-body non-resonant $B \rightarrow X_{s} \gamma$ decays where strange hadrons, $X_{s}$, are generated with a linewidth given by the mass spectrum predicted by either Ali and Greub~\cite{AliGreub} or Kagan and Neubert~\cite{KaganNeubert} model, according to the first parameter in the datacards given after the model is chosen. In case the Ali and Greub model is chosen, a parameterisation of the mass spectrum predicted for given inputs is used. The input parameters where based on PDG 2000 values plus a b quark Fermi momentum of 265 MeV for a spectator quark mass of 150 MeV, which was taken from CLEO fits of the semileptonic B momentum spectrum. In case the Kagan and Neubert model is used, the input parameters can be given as an input in the datacards. The are: F = Fermi momentum model (1 = exponential shape function, 2 = gaussian shape function, 3 = roman shape function), $m_B$, $m_b$, $\mu$, $\lambda_1$, $\delta$, z, number of intervals to compute $\alpha_s$, number of intervals to compute the hadronic mass. Moreover, as a possible option, no input parameters can be given after the Kagan and Neubert model is chosen, and in this case default input parameters are chosen ( F = 1, $m_B$ = 5.27885 GeV/c$^2$, $m_b$ = 4.80 GeV/c$^2$, $\mu$ = 4.80 GeV/c$^2$, $\lambda_1$ = 0.3, $\delta$ = 0.9, z = 0.084, number of intervals to compute $\alpha_s$ = 100, number of intervals to compute the hadronic mass = 80). A a cut--off on the hadronic mass at 1.1 GeV/c$^2$ is applied in this case according to~\cite{KaganNeubert}. The maximum mass value for all $X_{s}$ is 4.5 GeV/c$^2$ and the minimum mass value is at the K$\pi$ threshold for $X_{su}$ and $X_{sd}$, and at the KK threshold for $X_{ss}$. JETSET is required to decay the resulting $X_{s}$ into hadrons via phase-space production from the available quarks. The decay of $X_{s}$ needs to be switched on in the decay file using JETSET switches. \Example \noindent The example shows how to generate $B^{0} \rightarrow X_{sd} \gamma$ for the Ali and Greub Model. \begin{verbatim} # Xsd meson (sbar-d system, introduced for b->s gamma decays) # Set Xsd so it can decay: JetSetPar MDCY(455,1)=1 # Set decay table entry pt for Xsd: JetSetPar MDCY(455,2)=1154 # Number of decay channels for Xsd: JetSetPar MDCY(455,3)=1 # Switch on Xsd decay JetSetPar MDME(1154,1)=1 # Phase space decays into hadrons from available quarks JetSetPar MDME(1154,2)=11 # Xsd decays into two quarks a d and an anti-s JetSetPar KFDP(1154,1)=-3 JetSetPar KFDP(1154,2)=1 Decay B0 1.0000 Xsd gamma BTOXSGAMMA 1; Enddecay \end{verbatim} \Notes P1 should always be reserved for the $X_{s}$ particle and P2 should always be a gamma. Also, this model requires Jst74 V00-00-11 or higher to work. \Model{D\_DALITZ;} \label{dplusdalitz} \Auth{Kuznetsova} \Usage{D1 D2 D3}{} \Expl The Dalitz amplitude for three-body $K \pi \pi$ D decays; namely, for decays \begin{itemize} \item $D^+\rightarrow K^- \pi^+ \pi^+$ or $D^-\rightarrow K^+ \pi^- \pi^-$,\\ with the resonances (for the $D^{+}$ mode) $\overline{K}^{\,\ast}(892)^{0}\pi^{+}$, $\overline{K}^{\,\ast}(1430)^{0}\pi^{+}$, and $\overline{K}^{\,\ast}(1680)^{0}\pi^{+}$, using data from the E691 Fermilab experiment ~\cite{Anjos93}. \item $D^+\rightarrow \overline{K}^{0} \pi^+ \pi^0$ or $D^-\rightarrow K^0 \pi^- \pi^0$,\\ with the resonances (for the $D^{+}$ mode) $\overline{K}^{\,\ast}(892)^{0}\pi^{+}$, and $\overline{K}^{0}\rho^{+}$, using data from MARK III ~\cite{Adler87}. \item $D^0\rightarrow \overline{K}^0\, \pi^+ \pi^-$ or $\overline{D}^0\rightarrow K^0\, \pi^- \pi^+$,\\ with the resonances (for the $D^{0}$ mode) $K^{\,\ast}(892)^{-} \pi{+}$ and $\overline{K}^{0} \rho(770)^{0}$, using data from ~\cite{Anjos93}. \item $D^0\rightarrow K^{-} \pi^+ \pi^0$ or $\overline{D}^0\rightarrow K^+ \pi^- \pi^0$,\\ with the resonances (for the $D^{0}$ mode) $\overline{K}^{\,\ast}(892)^{0}\pi^{0}$, $K^{\,\ast}(892)^{-}\pi^{+}$, and $K^{-}\rho(770)^{+}$, using data from ~\cite{Anjos93}. \end{itemize} Be aware that the $D^+\rightarrow \overline{K}^{0} \pi^+ \pi^0$ and $D^-\rightarrow K^0 \pi^- \pi^0$ modes currently use the results from Mark III ~\cite{Adler87}, which are based on rather limited statistics. \Example To generate the decay $D^+\rightarrow K^- \pi^+ \pi^+$ the following entry in the decay table should be used \begin{verbatim} Decay D+ 1.000 K- pi+ pi+ D_DALITZ; Enddecay \end{verbatim} \Notes The order in which the particles are listed is very important: the kaon should always be first, and for the modes with the neutral pion the $\pi^{0}$ should always be last. \Model{GOITY\_ROBERTS} \label{goityroberts} \Auth{Alain,Ryd} \Usage{M1 M2 L N}{;} \Expl Model for the non-resonant $D^{(*)}\pi\ell\nu$ decays of $B$ mesons. The daughters are in the order: $D$-meson, pion, lepton and last the neutrino. \Example \begin{verbatim} Decay B0 1.000 D0B pi- e+ nu_e GOITY_ROBERTS; Enddecay \end{verbatim} \Notes This is not exactly what was published by Goity and Roberts~\cite{Goity95a}, partly due to errors in the paper and because the $D^*$ had to be removed from the $D\pi$ non-resonant. \Model{HELAMP} \label{helamp} \Auth{Ryd} \Usage{M D1 D2}{Amplitudes;} \Expl This model allows simulation of any two body decay by specifying the helicity amplitudes for the final state particles. The helicity amplitudes are complex numbers specified as pairs of magnitude and phase. The amplitudes are ordered, starting by the highest allowed helicity for the first particle. For a fixed helicity of the first particle the amplitudes are then specified starting with the highest allowed helicity of the second particle. This means that the helicities $H_{\lambda_1\lambda_2}$ are ordered first according the the value of $\lambda_1$ and then the value of $\lambda_2$. \Example Decay of $B^0->D^*\rho$, \begin{verbatim} Decay B+ 1.000 anti-D*0 rho+ HELAMP 0.228 0.95 0.283 1.13 0.932 0; Enddecay \end{verbatim} \Notes The amplitudes are taken from ICHEP 98-852. This model has been tested on many special cases, but further testing is needed. \Model{HQET} \label{hqet} \Auth{Lange} \Usage{M L N}{RHO2 R1 R2;} \Expl Model for the $D^{*}\ell\nu$ decay of $B$ mesons according to a HQET inspired parameterization. The daughters are in the order: $D^*$, lepton and last the neutrino. Since only the three form factors that contributes in the zero lepton mass limit are included the model is not accurate for $\tau$'s. The arguments, {\tt RHO2}, {\tt R1}, and {\tt R2} are the form factor slope, $\rho^2_{A_1}$ and the form factor ratios $R_1$ and $R_2$ respectively. These are defined, and measured, in~\cite{Dubo96} \Example Decay of $B^0\rightarrow D^*\ell\nu$ using HQET model \begin{verbatim} Decay B0 1.000 D*- e+ nu_e HQET3S1 0.92 1.18 0.72; Enddecay \end{verbatim} \Notes The values in the example above comes from the measurement in~\cite{Dubo96} by the CLEO collaboration. \Model{HQET2} \label{hqet2} \Auth{Ishikawa} \Usage{M L N}{RHO2 R1 R2;} \Expl Model for the $D^{*}\ell\nu$ decay of $B$ mesons according to the dispersive relation \cite{Cap98}. The daughters are in the order: $D^*$, lepton and last the neutrino. The arguments, {\tt RHO2}, {\tt R1}, and {\tt R2} are the form factor slope, $\rho^2_{A_1}$ and the form factor ratios $R_1$ and $R_2$ respectively. \Example Decay of $B^0\rightarrow D^*\ell\nu$ using HQET model \begin{verbatim} Decay B0 1.000 D*- e+ nu_e HQET2 1.35 1.3 0.8; Enddecay \end{verbatim} \Notes The values in the example above comes from the measurement in~\cite{Abe02} by the Belle collaboration. \Model{ISGW} \label{isgw} \Auth{Lange, Ryd} \Usage{D1 D2 D3}{;} \Expl This is a model for semileptonic decays of $B$, and $D$ mesons according to the ISGW model~\cite{Isgur89a}. The first daughter is the meson produced in the semileptonic decay. The second and third argument is the lepton and the neutrino respectively. See Section~\ref{semileptonic} for more details about semileptonic decays. \Example The example shows how to generate $\bar B^0\rightarrow D^{*+}e\nu$ \begin{verbatim} Decay anti-B0 1.000 D*+ e- anti-nu_e ISGW; Enddecay \end{verbatim} \Notes This model does not include the $A_3$ form factor that is needed for non-zero mass leptons, i.e., tau's. If tau's are generated the $A_3$ form factor will be zero. \Model{ISGW2} \label{isgw2} \Auth{Lange, Ryd} \Usage{D1 D2 D3}{;} \Expl This is a model for semileptonic decays of $B$, $D$, and $D_s$ mesons according to the ISGW2 model~\cite{Scora95}. The first daughter is the meson produced in the semileptonic decay. The second and third argument is the lepton and the neutrino respectively. See Section~\ref{semileptonic} for more details about semileptonic decays. \Example The example shows how to generate $\bar B^0\rightarrow D^{*+}e\nu$ \begin{verbatim} Decay anti-B0 1.000 D*+ e- anti-nu_e ISGW2; Enddecay \end{verbatim} \Notes This model has been fairly well tested for $B$ decays, most form factors and distributions have been compared to the original code that we obtained from D. Scora. \Model{JETSET} \label{jetset} \Auth{Ryd, Waldi} \Usage{D1 D2 DN}{MODE;} \Expl A particle who's decay is not implanted in EvtGen can be decayed by calling JetSet using this model as an interface. The decays that uses the {\tt JETSET} model are converted into the JetSet decay table format and read in by JetSet. However, if JetSet produces a final state which is explicitly listed as another decay of the parent it is rejected. E.g. consider this example: \begin{verbatim} Decay J/psi 0.0602 e+ e- VLL; 0.0602 mu+ mu- VLL; . . . 0.8430 rndmflav anti-rndmflav JETSET 12; Enddecay \end{verbatim} In this example if JetSet decays the $J/\Psi$ to $e^+e^-$ or $\mu^+\mu^-$ the decay is rejected and regenerated. For more details about the EvtGen-Jetset interface see Appendix~\ref{sect:jetsetinterface}. \Notes As discussed in Appendix~\ref{sect:jetsetinterface} the {\tt JETSET} model can not be used to decay a particle that is an alias. This is bacause JetSet does not allow for more than one decay table per particle. \Model{JSCONT} \Auth{Ryd, Kim} \Usage{}{Flavor;} \Expl This decay model is for generation of continuum events at the $\Upsilon(4S)$. It uses JetSet to fragment quark strings. The flavor of the primary string is given as the argument to the model and 1 means a $d\bar d$, 2 is $u\bar u$, 3 is $s\bar s$ and 4 is $c\bar c$. If the flavor is 0 a mixture of the quarks will be generated in the appropriate amounts. The first particle that is created is the {\tt vpho} which can be decayed using this decay model. The primary jets are created according to a $1+\cos^2\theta$ distribution, where $\theta$ is the angle of the primary jet with respect to the beam line, or more precisely the $z$-axis. \Example \begin{verbatim} Decay vpho 1.000 JSCONT 1; Enddecay \end{verbatim} \Model{KLL3P} \label{KLL3P} \Auth{Rotondo} \Usage{K L1 L2}{;} \Expl Implementation for the process $B\rightarrow K l^+ l^-$, as the previous model the form-factors are calculated in the framework of three-point QCD sum-rules ~\cite{Colangelo96}. \Example The example shows how to generate $B^+\rightarrow K^{+} e^+ e^-$ \begin{verbatim} Decay B+ 1.000 K+ e+ e- KLL3P; Enddecay \end{verbatim} \Notes Only Short Distance interaction are considered. %\Model{KS} % %\label{ks} % %\Auth{Lange, Ryd} % %\Usage{D1 D2 D3}{;} % %\Expl %This is a model for semileptonic decays of $B$, and $D$ mesons %according to the KS model~\cite{Korner88}. The first daughter %is the meson produced in the semileptonic decay. The second and third %argument is the lepton and the neutrino respectively. %See Section~\ref{semileptonic} for more details about semileptonic %decays. % %\Example %The example shows how to generate $\bar B^0\rightarrow D^{*+}e\nu$ %\begin{verbatim} %Decay anti-B0 %1.000 D*+ e- anti-nu_e KS; %Enddecay %\end{verbatim} % %\Notes %This model does not include the $A_3$ form factor that is %needed for non-zero mass leptons, i.e., tau's. If tau's %are generated the $A_3$ form factor will be zero. % % \Model{KSLLLCQCD} \label{KSLLLCQCD} \Auth{Rotondo} \Usage{K* L1 L2}{;} \Expl Implementation of the process $B\rightarrow K^* l^+ l^-$. In this model the hadronic part of the matrix element is calculated in the framework of the light-cone QCD sum rules ~\cite{Aliev97}. \Example The example shows how to generate $B^0\rightarrow K^{*0} \tau^+ \tau^-$. \begin{verbatim} Decay B0 1.000 K*0 tau+ tau- KSLLLCQCD; Enddecay \end{verbatim} \Notes In the Aliev's paper ~\cite{Aliev97} are taken in account some effects out the Standard-Model, this implementation recover only the $SM$ part of the interaction. \\ Only Short Distance contribution are considered.\\ Warning: a cut-off on the $q^2$ of the lepton pair are introduced. The $q^2$ is required to be greater than $0.08 GeV^2$, to avoid a large spend of time for the generation of the right configuration. This approximation is not useful for $B\rightarrow K^* e^+ e^-$. \Model{KSLL3PQCD} \label{KSLL3PQCD} \Auth{Rotondo} \Usage{K* L1 L2}{;} \Expl Implementation for the process $B\rightarrow K^* l^+ l^-$ in which the hadronic part of the matrix element is calculated in the framework of the three-point QCD sum rules ~\cite{Colangelo96}. \Example The example shows how to generate $B^0\rightarrow K^{*0} \mu^+ \mu^-$. \begin{verbatim} Decay B0 1.000 K*0 mu+ mu- KSLL3PQCD; Enddecay \end{verbatim} \Notes Only Short Distance interaction are considered.\\ Warning: as the previous model. \Model{LNUGAMMA} \label{lnugamma} \Auth{edward} \Usage{L NU GAMMA}{PMC R M\_B FAFVZERO;} \Expl Calculation of the tree-level matrix element for the process ${ B^{+}} \rightarrow l^{+} \nu_{l} \gamma$ ~\cite{Korchemsky00}. \Example The example shows how to generate ${ B^{+}} \rightarrow l^{+} \nu_{l} \gamma$. \begin{verbatim} Decay B0 1.0000 e+ nu_e gamma LNUGAMMA 0.35 3.0 5.0 0; Enddecay \end{verbatim} \Notes See the citation given above for more detail. Arg(0) is the photon mass cutoff in $GeV$, Arg(1) is $R$ in $GeV^{-1}$, Arg(2) is $m_b$ in $GeV$, and Arg(3) is set to 0 if the user wants $|f_{a}/f_{v}| = 1$, and set to 1 if the user wants $f_{a}/f_{v} = 0$. Arg(3) is optional, defaulting to 0. \Model{MELIKHOV} \label{MELIKHOV} \Auth{Lange} \Usage{M L NU}{;} \Expl Implements the form factor model for $B \rightarrow \rho \ell \nu$ according to Melikhov, as described in hep-ph/9603340. There is one argument, which should be an integer between 1 and 4. The arguement sets which set of form factors from Melikhov should be used. \Example The example shows how to generate $B^0\rightarrow \rho^- \mu^+ \nu_{\mu}$. \begin{verbatim} Decay B0 1.000 rho- mu+ nu_mu MELIKHOV 1; Enddecay \end{verbatim} %\Notes \Model{OMEGA\_DALITZ} \label{omegadalitz} \Auth{Lange} \Usage{P1 P2 P3}{;} \Expl The dalitz amplitude for the decay $\omega\rightarrow \pi^+\pi^-\pi^0$. The amplitude for this process is given by $A=\epsilon_{\mu\nu\alpha\beta} p^{\mu}_{\pi^+}p^{\nu}_{\pi^-}p^{\alpha}_{\pi^0}\varepsilon^{\beta}$. \Example \begin{verbatim} Decay omega 1.000 pi+ pi- pi0 OMEGA_DALITZ; Enddecay \end{verbatim} \Model{PARTWAVE} \label{partwave} \Auth{Ryd} \Usage{M D1 D2}{Amplitudes;} \Expl This model is similar to the {\tt HELAMP} model in that it allows any two-body decay specified by the partial wave amplitudes. This model translates the partial wave amplitudes to helicity amplitudes using the Jacob Wick transformation. The partial wave amplitudes are complex numbers, specified as a magnitude and a phase. The amplitudes $M_{LS}$ are sorted on the highest value of $L$ and then on the highest value of $S$. \Example Decay of $B^0->D^*\rho$ in this example would be in pure $P$-wave. \begin{verbatim} Decay B+ 1.000 anti-D*0 rho+ PARTWAVE 0.0 0.0 1.0 0.0 0.0 0.0; Enddecay \end{verbatim} \Notes This model has been tested on some special cases, but further testing is needed. \Model{PHSP} \label{phsp} \Auth{Ryd} \Usage{P1 P2 ... PN}{;} \Expl Generic phase space to n-bodies. All spins of particles in the initial state and the final state are averaged. \Example As an example of using this model the decay $D^0\rightarrow K^{*-}\pi^+\pi^0\pi^0$ is used. \begin{verbatim} Decay D0 1.000 K*- pi+ pi0 pi0 PHSP; Enddecay \end{verbatim} % PTO3P model \input evt_pto3p \Model{SINGLE} \label{single} \Auth{Ryd} \Usage{P}{pmin pmax [cthetamin cthetamax [phimin phimax]];} \Expl Generates single particle rays in the region of phase space specified by the arguments. This single particle generator generates decays uniformly in the parents rest frame in the momentum range from {\tt pmin} to {\tt pmax}. However, the range of $\theta$ is specified in the lab frame. The last two and four arguments need not be specified. If the last two are omitted the $\phi$ range is from $0$ to $2\pi$ and if the last four arguments are omitted the $\cos\theta$ range is from $-1$ to $+1$. \Example Generates $\mu^+$ with momentum from 0.5 to 1.0 GeV over $4\pi$. \begin{verbatim} Decay Upsilon(4S) 1.000 mu+ SINGLE 0.5 1.0 -1.0 1.0 0.0 6.283185; Enddecay \end{verbatim} or simply \begin{verbatim} Decay Upsilon(4S) 1.000 mu+ SINGLE 0.5 1.0; Enddecay \end{verbatim} \Model{SLN} \label{sln} \Auth{Songhoon,Ryd} \Usage{L N}{;} \Expl This decay generates the decay of a scalar to a lepton and a neutrino. The amplitude for this process is given by $A=P^{\nu}\langle \ell | (V-A)_{\nu} | \nu \rangle$. \Example As an example of using this model the decay $D_s^+\rightarrow \mu^+\bar\nu$ is used. \begin{verbatim} Decay DS+ 1.000 mu+ nu_mu SLN; Enddecay \end{verbatim} \Model{SLPOLE} \label{SLPOLE} \Auth{Lange} \Usage{M L NU}{arguments;} \Expl Implements a semileptonic decay according to a pole form parametrization. For definition of the form factors that are used see section~\ref{sect:EvtSLPole}. \Example The example shows how to generate $B^0\rightarrow \rho^- \mu^+ \nu_{\mu}$. \begin{verbatim} Decay B0 1.000 rho- mu+ nu_mu SLPOLE 0.27 -0.11 -0.75 1.0 0.23 -0.77 -0.40 1.0 0.34 -1.32 0.19 1.0 0.37 -1.42 0.50 1.0; Enddecay \end{verbatim} %\Notes \Model{SSD\_CP} \label{ssdcp} \Auth{Ryd} \Usage{S D}{dm dgog |q/p| arg(q/p) |A\_f| argA\_f |barA\_f| argbarA\_f\\ |A\_barf| argA\_barf |barA\_barf| argbarA\_barf |z| arg(z);} \Expl This model simulates the decay of a $B$ meson to a scalar and one other particle of arbitrary (integer) spin. Where {\tt dm} is the mass difference of the two mass eigenstates, {\tt dgog} is $2y$, $y\equiv (\Gamma_H-\Gamma_L)/(\Gamma_H+\Gamma_L)$. {\tt qop} is $q/p$ where $|B_{L,H}\rangle=p|B^0\rangle\pm q|\bar B^0\rangle$. {\tt Af} and {\tt Abarf} are the amplitudes for the decay of a $B^0$ and a $\bar B^0$ respectively to the final state $f$. The set of amplitudes, {\tt Afbar} and {\tt Abarfbar} corresponds to the decay to the $CP$ conjugate final state. These amplitudes are optional and are by default $A_{\bar f}=\bar A^*_{f}$ and ${\bar A}_{\bar f}=A^*_f$, consistent with $CPT$ for a common final state of the $B^0$ and $\bar B^0$. However, in modes such as $B\to D^*\pi$ it is usefull to be able to specify these amplitudes separately, see example below. The parameter $z$ allows for $CPT$ violation in mixing. By default $z$ is set to 0 which means that $CPT$ is conserved. (This parameter is described in the internal BABAR note BAD188, we need a public reference.) An example of using this model for simulating $B^0\to J/\psi K_S^0$ and $B^0\to J/\psi K_L^0$ \begin{verbatim} Define dm 0.472e12 Define minusTwoBeta -0.85 Decay B0 0.5000 K_S0 J/psi SSD_CP dm 0.0 1.0 minusTwoBeta 1.0 0.0 -1.0 0.0; 0.5000 K_L0 J/psi SSD_CP dm 0.0 1.0 minusTwoBeta 1.0 0.0 1.0 0.0; Enddecay \end{verbatim} Note that the sign of the amplitude for the $\bar B^0$ decay have the oposite sign for the $K_S^0$ as this final state is odd under parity. To generate the final state $\pi^+\pi^-$. \begin{verbatim} Define dm 0.472e12 Define minusTwoBeta -0.85 Define gamma 1.0 Define minusgamma -1.0 Decay B0 1.0000 pi+ pi- SSD_CP dm 0.0 1.0 minusTwoBeta 1.0 gamma 1.0 minusgamma; Enddecay \end{verbatim} These examples have used $|q/p|=1$ and $\Delta\Gamma=0$. An example with non-trivial values for these parameters would be $B_s\to J/\psi \eta$ \begin{verbatim} Define dms 14e12 DEfine dgog 0.1 Decay B_s0 1.0000 J/psi eta SSD_CP dms dgog 1.0 0.0 1.0 0.0 -1.0 0.0; Enddecay \end{verbatim} This model can also be used for final states that are not $CP$ eigenstates, such as $B^0\to D^{*+}\pi^-$ and $B^0\to D^{*-}\pi^+$. We can generate these decays using \begin{verbatim} Define dm 0.472e12 Define minusTwoBeta -0.85 Define Rdp 0.1 Define PlusGamma 0.8 Define MinusGamma -0.8 Decay B0 1.000 D*- pi+ SSD_CP dm 0.0 1.0 minusTwoBeta 1.0 0.0 Rdp PlusGamma Rdp MinusGamma 1.0 0.0; Enddecay \end{verbatim} Where the Cabibbo-suppressed decay has a relative strong phase $\gamma$ with respect to the Cabibbo-favored decay and the ratio of the amplitudes are given by {\tt Rdp}. \Notes For more details about the treatment of CP violating decays see Section~\ref{sect:cpviolation}. \Model{SSS\_CP} \label{ssscp} \Auth{Ryd} \Usage{S S}{ALPHA dm cp |A| argA |barA| argbarA;} \Expl Decay of a scalar to two scalar and allows for CP violating time asymmetries. The first argument is the relevant CKM angle in radians. The second argument is the mass difference in s$^-1$ (approx $0.5\times 10^{12}$). cp is the CP of the final state, it is $\pm 1$. Next is the amplitude of a $B^0$ to decay to the final state, where the third argument is the magnitude of the amplitude and the fourth is the phase. The last two arguments are the magnitude and phase of the amplitude for a decay of a $\bar B^0$ to decay to the final state. This model then uses these amplitudes together with the time evolution of the $B\bar B$ system and the flavor of the other $B$ to generate the time distributions. \Example This example decays the $B$ meson to $\pi+\pi^-$ \begin{verbatim} Decay B 1.000 pi+ pi- SSS_CP alpha dm 1.0 0.0 1.0 0.0; Enddecay \end{verbatim} \Notes For more details about the treatment of CP violating decays see Section~\ref{sect:cpviolation}. \Model{SSS\_CP\_PNG} \label{ssscppng} \Auth{Ryd, Kuznetsova} \Usage{S S}{\,BETA GAMMA DELTA dm cp $|A_{tree}|$ $|A_{tree}|/|A_{penguin}|$;} \Expl This model takes into account penguin contributions in $B \rightarrow \pi \,\pi$ decays. It assumes single (top) quark dominance for the penguin. The first two arguments are the relevant CKM angles in radians; the third argument is the relative strong phase in radians; dm is the mass difference in s$^{-1}$ (approx $0.5\times 10^{12}$); cp is the CP of the final state; $|A_{tree}|$ is the tree-level amplitude, and ${|A_{tree}|}/{|A_{penguin}|}$ is the ratio of the amplitudes for the tree and penguin diagrams ($\approx$ 0.2 for this decay mode). This model automatically takes into account the correct number of $B^{0}$ tags for this decay, which is given by: \begin{equation} f = \frac{|\overline{A}_{f}|^2 \left(1 + |\overline{r}_{f}|^2 + \frac{(1 - |\overline{r}_{f}|^2)}{1+x_{d}^2} \right)}{|\overline{A}_{f}|^2 \left(1 + |\overline{r}_{f}|^2 + \frac{(1 - |\overline{r}_{f}|^2)}{1+x_{d}^2} \right) + |{A}_{f}|^2 \left(1 + |r_{f}|^2 + \frac{(1 - |r_{f}|^2)}{1+x_{d}^2} \right)} \end{equation} where $x_{d} \equiv \frac{\Delta m}{\Gamma} \approx 0.65$, and \begin{equation} r_{f} = e^{2i\,\phi_{M}}\,\frac{\overline{A}_{f}}{A_{f}}, \,\,\overline{r}_{f} = \frac{1}{r_{f}} \end{equation} $\phi_{M}$ being the mixing angle, and the amplitude $A_{f}$ being: \begin{equation} A_{f} \equiv A(B^{0} \rightarrow \pi^{+} \pi^{-}) = A_{t}\,e^{i\phi_{t}} + A_{p}\,e^ {i\phi_{p}}\,e^{i\delta} \end{equation} with \begin{equation} \overline{A}_{f} \equiv A(\overline{B}^{0} \rightarrow \pi^{+} \pi^{-}) = A_{t}\,e^{-i\phi_{t}} + A_{p}\,e^{-i\phi_{p}}\,e^{i\delta} \end{equation} Here, $A_{t}$, $\phi_{t}$ are tree-level amplitude and phase, respectively, $A_{p}$, $\phi_{p}$ are those for the penguin, and $\delta$ is the relative strong phase. \Example This example generates $B^{0} \rightarrow \pi^{+}\, \pi^{-}$. \begin{verbatim} Decay B0 1.000 pi+ pi- SSS_CP_PNG beta gamma 0.1 dm 1.0 1.0 0.2; Enddecay \end{verbatim} \Notes For more details about the treatment of CP violating decays see section~\ref{sect:cpviolation}. \Model{STS} \label{sts} \Auth{Ryd} \Usage{T S}{;} \Expl This model decays a scalar meson to a tensor and a scalar. \Example This example decays the $B^+$ meson to $D_2^*0\pi^+$ \begin{verbatim} Decay B+ 1.000 D_2*0 pi+ STS; Enddecay \end{verbatim} %\Notes \Model{STS\_CP} \label{stscp} \Auth{Ryd} \Usage{T S}{ALPHA dm cp |A| argA |barA| argbarA;} \Expl Decay of a scalar to a tensor and a scalar and allows for CP violating time asymmetries. The first argument is the relevant CKM angle in radians. The second argument is the mass difference in s$^-1$ (approx $0.5\times 10^{12}$). cp is the CP of the final state, it is $\pm 1$. Next is the amplitude of a $B^0$ to decay to the final state, where the third argument is the magnitude of the amplitude and the fourth is the phase. The last two arguments are the magnitude and phase of the amplitude for a decay of a $\bar B^0$ to decay to the final state. This model then uses these amplitudes together with the time evolution of the $B\bar B$ system and the flavor of the other $B$ to generate the time distributions. \Example This example decays the $B$ meson to $a_2^0\pi^0$ \begin{verbatim} Decay B0 1.000 a_20 pi0 STS_CP alpha dm 1.0 0.0 1.0 0.0; Enddecay \end{verbatim} \Notes For more details about the treatment of CP violating decays see section~\ref{sect:cpviolation}. \Model{SVP\_HELAMP} \label{svphelamp} \Auth{Ryd} \Usage{V P}{|H+| argH+ |H-| argH-;} \Expl The decay of a scalar to a vector and a photon. This decay is parameterized by the helicity amplitudes $H_+$ and $H_-$. For more information about helicity amplitudes see Section~\ref{sect:helampconventions}/ \Example \begin{verbatim} Decay B0 1.000 K*0 gamma SVP_HELAMP 1.0 0.0 1.0 0.0; Enddecay \end{verbatim} \Model{SVS} \label{svs} \Auth{Ryd} \Usage{V S}{;} \Expl The decay of a scalar to a vector and a scalar. The first daughter is the vector meson. \Example As an example we consider $B\rightarrow D^*\pi$. \begin{verbatim} Decay B0 1.000 D*+ pi- SVS; Enddecay \end{verbatim} \Model{SVS\_CP} \label{svscp} \Auth{Ryd} \Usage{V S}{ALPHA dm cp |A| argA |barA| argbarA;} \Expl Decay of a scalar to a vector and a scalar and allows for CP violating time asymmetries. The first daughter has to be the vector. The first argument is the relevant CKM angle in radians. The second argument is the mass difference in s$^-1$ (approx $0.5\times 10^{12}$). cp is the CP of the final state, it is $\pm 1$. Next is the amplitude of a $B^0$ to decay to the final state, where the third argument is the magnitude of the amplitude and the fourth is the phase. The last two arguments are the magnitude and phase of the amplitude for a decay of a $\bar B^0$ to decay to the final state. This model then uses these amplitudes together with the time evolution of the $B\bar B$ system and the flavor of the other $B$ to generate the time distributions. \Example This example decays the $B^0$ meson to $J/\Psi K_s$ \begin{verbatim} Decay B0 1.000 J/psi K_S0 SVS_CP beta dm 1.0 0.0 1.0 0.0; Enddecay \end{verbatim} \Notes For more details about the treatment of CP violating decays see Section~\ref{sect:cpviolation}. \Model{SVS\_CP\_ISO} \label{svscpiso} \Auth{NK} \Usage{V S}{beta dm flip |$T^{+0}$| arg$T^{+0}$ |$\overline{T^{+0}}$| arg$\overline{T^{+0}}$ \\ |$T^{0+}$| arg$T^{0+}$ |$\overline{T^{0+}}$| arg$\overline{T^{0+}}$ \\ |$T^{+-}$| arg$T^{+-}$ |$\overline{T^{+-}}$| arg$\overline{T^{+-}}$ \\ |$T^{-+}$| arg$T^{-+}$ |$\overline{T^{-+}}$| arg$\overline{T^{-+}}$ \\ |$P_{0}$| arg$P_{0}$ |$\overline{P_{0}}$| arg$\overline{P_{0}}$ \\ |$P_{2}$| arg$P_{2}$ |$\overline{P_{2}}$| arg$\overline{P_{2}}$;} \Expl This model considers $B$ decays into a vector ($V$) and a scalar ($S$) from the point of view of isospin analysis. The vector should always be listed first. For the three $B^{0}$ (or $\overline{B}^{0}$) modes ($B^{0} \rightarrow V^{+} S^{-}$, $B^{0} \rightarrow V^{-} S^{+}$, and $B^{0} \rightarrow V^{0} S^{0}$), it takes into account mixing, and generates the corresponding CP-violating asymmetries. It can also be used for the two isospin-related $B^{+}$ ($B^{-}$) modes (e.g., $B^{+} \rightarrow V^{+} S^{0}$ and $B^{+} \rightarrow V^{0} S^{+}$), as all five modes should be treated together in this approach. Following the conventions of Lipkin, Nir, Quinn, and Snyder (Phys. Rev. D{\bf 44}, 1454 (1991)), the various decay amplitudes can be written as follows: \begin{equation} A(B^{+} \rightarrow V^{+} S^{0}) \equiv \sqrt{2}A^{+0} = T^{+0} + 2 P_{1} \end{equation} \begin{equation} A(B^{+} \rightarrow V^{0} S^{+}) \equiv \sqrt{2}A^{0+} = T^{0+} - 2 P_{1} \end{equation} \begin{equation} A(B^{0} \rightarrow V^{+} S^{-}) \equiv A^{+-} = T^{+-} + P_{1} + P_{0} \end{equation} \begin{equation} A(B^{0} \rightarrow V^{-} S^{+}) \equiv A^{-+} = T^{-+} - P_{1} + P_{0} \end{equation} \begin{equation} A(B^{0} \rightarrow V^{0} S^{0}) \equiv 2 A^{00} = T^{0+} + T^{+0} - T^{-+} - T^{+-} - 2 P_{0} \end{equation} where the amplitudes $T^{ij}$ contain no penguin contributions, $P_{1}$ is penguin amplitude for the final $I$ = 1 state, and $P_{0}$, for the final $I$ = 0 state. The model's arguments are: \begin{itemize} \item beta = corresponding CKM angle \item dm = $B^{0} \overline{B}^{0}$ mass difference ($\approx 0.5 \times 10^{12} s^{-1}$). \item ``flip'' sets the fraction of $B \rightarrow f$ to $B \rightarrow \overline{f}$ decays, where the state specified in the .DEC table is considered the ``$f$'' state. Set it to 0 to always get the $B \rightarrow f$ case, and to 1 to always get the $B \rightarrow \overline{f}$ case. \item $|T^{+0}|$, $\varphi_{T^{+0}}$ = magnitude and phase of the corresponding amplitude \item $|\overline{T^{+0}}|$, $\varphi_{\overline{T^{+0}}}$ = magnitude and phase of the corresponding amplitude for the CP-conjugate process. \item $|T^{0+}|$, $\varphi_{T^{0+}}$ = magnitude and phase of the corresponding amplitude \item $|\overline{T^{0+}}|$, $\varphi_{\overline{T^{0+}}}$ = magnitude and phase of the corresponding amplitude for the CP-conjugate process. \item $|T^{+-}|$, $\varphi_{T^{+-}}$ = magnitude and phase of the corresponding amplitude \item $|\overline{T^{+-}}|$, $\varphi_{\overline{T^{+-}}}$ = magnitude and phase of the corresponding amplitude for the CP-conjugate process. \item $|T^{-+}|$, $\varphi_{T^{-+}}$ = magnitude and phase of the corresponding amplitude \item $|\overline{T^{-+}}|$, $\varphi_{\overline{T^{-+}}}$ = magnitude and phase of the corresponding amplitude for the CP-conjugate process. \item $|P_{0}|$, $\varphi_{P_{0}}$ = magnitude and phase of the corresponding amplitude \item $|\overline{P_{0}}|$, $\varphi_{\overline{P_{0}}}$ = magnitude and phase of the corresponding amplitude for the CP-conjugate process. \item $|P_{2}|$, $\varphi_{P_{2}}$ = magnitude and phase of the corresponding amplitude \item $|\overline{P_{2}}|$, $\varphi_{\overline{P_{2}}}$ = magnitude and phase of the corresponding amplitude for the CP-conjugate process. \end{itemize} \Example This example decays the $B^{0}$ meson to $a_{1}^{-} \pi^{+}$ assuming no penguin contributions \begin{verbatim} Decay B0 1.000 a_1- pi+ SVS_CP_ISO beta dm 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 gamma 3.0 -gamma 3.0 gamma 1.0 -gamma 0.0 0.0 0.0 0.0; Enddecay \end{verbatim} \Notes For more details about the treatment of CP violating decays see section~\ref{sect:cpviolation}. \Model{SVS\_NONCPEIGEN} \label{svsnoncpeigen} \Auth{Natalia,Ryd} \Usage{V S}{\\[0.05truein] \begin{tabular}{ll} alpha dm flip & |$A_{f}$| arg$A_{f}$ |$\overline{A}_{f}$| arg$\overline{A}_{f}$ \\[0.05truein] & |$A_{\overline{f}}$| arg$A_{\overline{f}}$ |$\overline{A}_{\overline{f}}|$ args$\overline{A}_{\overline{f}}$; [these are optional]\\ \end{tabular} } \Expl This model allows to generate scalar $\rightarrow$ vector + scalar decays, where the final state is not a CP-eigenstate. The {\tt flip} parameter sets the fraction of $f$ to $\bar f$ decays, where the state specified in the .DEC table is considered the ``$f$'' state. Set it to 0 to always get the final $f$ case, and to 1 to always get the $\overline{f}$ final state. Otherwise, set it to 0.5 to get the physical situation. This model automatically generates the correct number of $B^{0}$ and $\bar{B}^{0}$ tags, depending on the specified amplitudes. Note that the last four parameters are optional. If they are not specified, then they are evaluated from the following relations between the complex amplitudes: %%% \begin{eqnarray} A_{\overline f} &=& \overline A_f \nonumber\\ \overline A_{\overline f} &=& A_f \label{eq:svs_noncpeigen} \end{eqnarray} \Example This example will generate a mixture of $a_1^+ \pi^-$ and $a_1^- \pi^+$ final states with the appropriate number of $B^0$ and $\bar B^0$ tags. Note that the last 4 parameters could have been omitted, since they agree with Eq.~(\ref{eq:svs_noncpeigen}) \begin{verbatim} Alias MYB B0 Decay Upsilon(4S) 1.00 MYB B0 Enddecay Decay MYB 1.000 a_1- pi+ SVS_NONCPEIGEN alpha dm 0.5 1.0 0.0 3.0 0.0 3.0 0.0 1.0 0.0; Enddecay \end{verbatim} For $B \rightarrow D{*\pm}\pi^\mp$, use the CKM phase betaPlusHalfGamma. {\bf Note:} Temporarily, this model only works for B0, not anti-B0. This will be fixed later. %Note that 0.5 will $50\%$ of the time charge conjugate the final state %$a_1^-\pi^+$ and that the tag $B$, the other $B$ in the $\Upsilon(4S)$ decay %will be selected as either a $B^0$ or a $\bar B^0$ according to the %amplitudes that are specified. Also, note that the $B$ that decays into %the CP mode has to be an alias for either a $B^0$ or a $\bar B^0$, it %can not be a $B^0$ or a $\bar B^0$ directly, since the {\tt SVS\_NONCPEIGEN} %model will create the other $B$ either as a $B^0$ or a $\bar B^0$! \Notes For more details about the treatment of CP violating decays see Section~\ref{sect:cpviolation}. \Model{SVV\_CP} \label{svvcp} \Auth{Ryd} \Usage{V1 V2}{BETA dm eta |G1+| argG1+ |G0+| argG0+\\ |G1-| argG1-;} \Expl Decay of a scalar to two vector mesons and allows for CP violating time asymmetries. The first argument is the relevant CKM angle in radians. The second argument is the $B^0-\bar B^0$ mass difference in s$^{-1}$ (approximately $0.5\times 10^{12}$). The next argument is called $\eta$ in Ref.~\cite{Duni91} and is either $+1$ or $-1$. The last six arguments are $G_{1+}$, $G_{0+}$, and $G_{1-}$, and are expressed as their absolute values and phases again the definition of these parameters are in Ref.~\cite{Duni91}. This model then uses these amplitudes together with the time evolution of the $B\bar B$ system and the flavor of the other $B$ to generate the time distributions. \Example This example decays the $B^0$ meson to $J/\Psi K^{*0}$ \begin{verbatim} Decay B0 1.000 J/psi K*0 SVV_CP beta dm 1.0 1.0 0.0 1.0 0.0 1.0 0.0; Enddecay \end{verbatim} \Notes For more details about the treatment of CP violating decays see Section~\ref{sect:cpviolation}. Note that the value of $\eta$ depends on how the $K^{*0}$ decays, it is either $+1$ or $-1$ depending on weather a $K_S$ or a $K_L$ is produced. (It needs to be checked which sign goes with the $K_S$ and the $K_L$. \Model{SVV\_CPLH} \label{svvcplh} \Auth{Ryd} \Usage{V1 V2}{BETA dm eta |G1+| argG1+ |G0+| argG0+\\ |G1-| argG1-;} \Expl Decay of a scalar to two vector mesons and allows for CP violating time asymmetries including different lifetimes for the different mass eigenstates, the Light and Heavy state. This model is particularly intended for decays like $B_s\rightarrow J/\psi \phi$. The first argument is the relevant CKM angle in radians. The second argument is the $B_s-\bar B_s$ mass difference in s$^{-1}$ ($>1.8\times 10^{12}$). The width difference is not an input parameter to the model. It is determined via the definition of B\_s0L and B\_s0H in the evt.pdl. %The third argument is the widht %difference between the two states. Given in units of mm, i.e. %$c\hbar/(\Delta \Gamma)$. The next argument is called $\eta$ in Ref.~\cite{Duni91} and is either $+1$ or $-1$. The last six arguments are $G_{1+}$, $G_{0+}$, and $G_{1-}$, and are expressed as their absolute values and phases again the definition of these parameters are in Ref.~\cite{Duni91}. This model then uses these amplitudes together with the time evolution of the $B_s$ to generate the time dependent angular distributions. \Example This example decays the $B_s$ meson to $\phi K^{*0}$ \begin{verbatim} Decay B_s0 1.000 J/psi phi SVV_CPLH 0.4 3.0e12 2.0 1 1.0 0.0 1.0 0.0 1.0 0.0; Enddecay \end{verbatim} \Notes For more details about the treatment of CP violating decays see Section~\ref{sect:cpviolation}. This code is not well tested at all. Please be aware that there can be serious mistakes in this model! \Model{SVS\_CPLH} \label{svscplh} \Auth{Ryd} \Usage{V S}{dm dGoG |q/p| arg(q/p) |Af| arg(Af) |Abarf| arg(Abarf);} \Expl Decay of a neutral $B$ meson to a scalar and a vector CP eigenstate, e.g. $B^0\to J/\psi K_S$. The first argument is the $B^0-\bar B^0$ mass difference. The second argument in $\Delta\Gamma/\Gamma$. The third and fourth argument is the magnitude and phase of $q/p$, and the last four arguments are the magnitude and phases of the amplitude for $B^0$ and $\bar B^0$ to decay to the final state $f$. \Example This example decays the $B^0$ meson to $J/\psi K_S$ \begin{verbatim} Decay B0 1.000 J/psi K_S0 SVS_CPLH 0.472e12 0.1 1.0 0.7 1.0 0.0 1.0 0.0; Enddecay \end{verbatim} %\Notes \Model{SVV\_NONCPEIGEN} \label{svvnoncpeigen} \Auth{ Kurup} \Usage{V1 V2}{\\[0.05truein] \begin{tabular}{lll} dm beta gamma & |$A_{+f}$| arg$A_{+f}$ |$A_{0f}$| arg$A_{0f}$ |$A_{-f}$| arg$A_{-f}$ &\\[0.05truein] % & |$\overline{A}_{+f}$| arg$\overline{A}_{+f}$ |$\overline{A}_{0f}$| arg$\overline{A}_{0f}$ |$\overline{A}_{-f}$| arg$\overline{A}_{-f}$ &\\[0.05truein] % & |$A_{+\overline{f}}$| arg$A_{+\overline{f}}$ |$A_{0\overline{f}}$| arg$A_{0\overline{f}}$ |$A_{-\overline{f}}$| arg$A_{-\overline{f}}$ &[optional] \\[0.05truein] % & |$\overline{A}_{+\overline{f}}$| arg$\overline{A}_{+\overline{f}}$ |$\overline{A}_{0\overline{f}}$| arg$\overline{A}_{0\overline{f}}$ |$\overline{A}_{-\overline{f}}$| arg$\overline{A}_{-\overline{f}}$; &[optional]\\ \end{tabular} } \Expl This model is based on the SVS\_NONCPEIGEN model and allows the generation of CP violation in scalar~$\rightarrow$~vector~+~vector decays, where the final state is not a CP-eigenstate. The first argument is the $B^0-\bar B^0$ mass difference. The second argument is the angle beta. The third argument is the angle relevant to the decay mode being generated. In the example below it is gamma (in fact, it's enough to specify 2~beta~+~gamma, perhaps in the next round of fixes). The next 24 arguments are the magnitudes and phases of the amplitudes for the four types of decay, $A_f$, $\overline A_f$, $A_{\overline f}$ and $\overline A_{\overline f}$, which are split into the three different helicity states +, 0 and $-$. Depending on the specified amplitudes, the final state will be charge conjugated and the correct number of $B^0$ and $\bar B^0$ tags are generated. Note that the last 12 parameters are optional. If they are not specified, then they are evaluated according to the following relation between the complex amplitudes (with $i=+,0,-$): %%% \begin{eqnarray} A_{i \overline f} &=& \overline A_{if} \nonumber\\ \overline A_{i \overline f} &=& A_{if} \label{eq:svv_noncpeigen} \end{eqnarray} \Example This example will generate $B \rightarrow D^{*\pm} \rho^\mp$ final states with the appropriate number of $B^0$ and $\bar B^0$ tags. The helicity amplitude parameters chosen for the first line are those measured by CLEO. The amplitudes on the second line are identical, but suppressed by a factor of 100. The last two lines were omitted, so that Eq~(\ref{eq:svv_noncpeigen}) takes effect: %% \begin{verbatim} Alias MYB B0 Decay Upsilon(4S) 1.00 MYB anti-B0 Enddecay Decay MYB 1.000 D*- rho+ SVV_NONCPEIGEN dm beta gamma 0.152 1.47 0.936 0 0.317 0.19 0.00152 1.47 0.00936 0 0.00317 0.19; Enddecay \end{verbatim} {\bf Note:} Temporarily, this model only works for B0, not anti-B0. This will be fixed later. \Model{SVV\_HELAMP} \label{svvhelamp} \Auth{Ryd} \Usage{V1 V2}{|H+| argH+ |H0| argH0 |H-| argH-; } \Expl The decay of a scalar to two vectors. The decay amplitude is specified by the helicity amplitudes which are given as arguments for the decay. The arguments are $H_+$, $H_0$, and $H_-$. Where these complex amplitudes are specified as magnitude and phase. The convention for the helicity amplitudes are that of Jacob and Wick (at least I hope this is what it is!). For more details about helicity amplitudes see Section~\ref{sect:helampconventions}. \Example \begin{verbatim} Decay D0 1.000 K*0 rho0 SVV_HELAMP 1.0 0.0 1.0 0.0 1.0 0.0; Enddecay \end{verbatim} \Model{TAULNUNU} \Auth{Ryd} \Usage{L N1 N2}{;} \Expl The decay of a tau to a lepton and two neutrinos. The first daughter is the produced lepton the second is the associated neutrino and the third is the tau neutrino. The amplitude for this decay is given by $A=\langle \tau | (V-A)_{\alpha} | \nu_{\tau} \rangle \langle \ell | (V-A)^{\alpha} | \nu_{\ell} \rangle$. \Example The example shows the decay $\tau\rightarrow e\nu_{e}\bar\nu_tau$ \begin{verbatim} Decay tau- 1.000 e- anti-nu_e nu_tau TAULNUNU; Enddecay \end{verbatim} \Model{TAUSCALARNU} \label{tauscalarnu} \Auth{Ryd} \Usage{S N}{} \Expl The decay of a tau to a scalar meson and a tau neutrino. The meson is the first daughter. The amplitude for this decay is given by $A=\langle \tau | (V-A)_{\alpha} | \nu_{\tau} \rangle P^{\alpha}$. \Example An example of the use of this model is in the decay $\tau\rightarrow \pi\nu_{\tau}$ \begin{verbatim} Decay tau- 1.000 pi- nu_tau TAUSCALARNU; Enddecay \end{verbatim} \Model{TAUVECTORNU} \label{tauvector} \Auth{Ryd} \Usage{V N}{} \Expl The decay of a tau to a vector meson and a tau neutrino. The meson is the first daughter. The amplitude for this decay is given by $A=\langle \tau | (V-A)_{\alpha} | \nu_{\tau} \rangle \varepsilon^{\alpha}$. \Example An example of the use of this model is in the decay $\tau\rightarrow \rho\nu_{\tau}$ \begin{verbatim} Decay tau- 1.000 rho- nu_tau TAUVECTORNU; Enddecay \end{verbatim} \Model{TSS} \label{tss} \Auth{Ryd} \Usage{S1 S2}{} \Expl The decay of a tensor particle to two scalar mesons. \Example As an example the decay $D_2^{*0}\rightarrow D^0\pi^0$is used. \begin{verbatim} Decay D_2*0 1.000 D0 pi0 TSS; Enddecay \end{verbatim} \Model{TVS\_PWAVE} \Auth{Ryd} \Usage{V S}{|P| argP |D| argD |F| argF;} \Expl The decay of a tensor particle to a vector and a scalar. The decay takes six arguments, which parameterizes the $P$, $D$, and $F$ wave amplitudes. The first two arguments are the magnitude and the phase of the $P$-wave amplitude, the third and forth are the $D$-wave amplitude and the last two are the $F$-wave amplitude. \Example The decay $D_2^{*0}\rightarrow D^{*0} \pi^0$ which is expected, by HQET, to be dominated by $D$ wave. \begin{verbatim} Decay D_2*0 1.000 D*0 pi0 TVS_PWAVE 0.0 0.0 1.0 0.0 0.0 0.0; Enddecay \end{verbatim} \Notes This model has only been used yet for $D$-wave so further test are needed before it is safe to use for nonzero $P$ and $F$ wave amplitudes. \Model{VECTORISR} \label{vectorisr} \Auth{Zallo,Ryd} \Usage{VECTOR GAMMA}{CSFWMN CSBKMN;} \Expl Generates the interaction, $e^+ e^- \rightarrow V \gamma$ where $V$ is a vector meson according to~\cite{Bonn71}. This model should be used as a decay of the {\tt vpho}. \Example Example below shows how to generate the $\phi\gamma$ final state from an virtual photon. \begin{verbatim} Decay vpho 1.000 phi gamma VECTORISR 0.878 0.95; Enddecay \end{verbatim} \Notes This model produces an unpolarized vector meson. \Model{VLL} \label{vll} \Auth{Ryd} \Usage{L1 L2}{;} \Expl Decay of a vector meson to a pair of charged leptons, e.g., $J/\psi\rightarrow\ell^+\ell^-$. The amplitude for this process is given by $A=\varepsilon^{\mu}L_{\mu}$ where $L_{\mu}=\langle \ell | V_{\mu} | \bar\ell \rangle$. \Example The example shows how to generate $J/\Psi \rightarrow e^-e^+$ \begin{verbatim} Decay J/psi 1.000 e- e+ VLL; Enddecay \end{verbatim} \Model{VSP\_PWAVE} \label{vsppwave} \Auth{Ryd} \Usage{S gamma}{;} \Expl The decay of a vector to a scalar meson and a photon, the decay goes in P-wave. The first daughter is the scalar meson and the second daughter is the photon. \Example This decay is useful for example in the decay $D^{*0}\rightarrow D^0\gamma$ \begin{verbatim} Decay D*0 1.000 D0 gamma VSP_PWAVE; Enddecay \end{verbatim} \Model{VSS} \label{vss} \Auth{Ryd} \Usage{S1 S2}{;} \Expl Decays a vector particle into two scalars. It generates the correct decay angle distributions for the produced scalars. The amplitude for this decay is given by $A=\varepsilon^{\mu}v_{\mu}$ where $\varepsilon$ is the polarization vector of the parent particle and the $v$ is the (four) velocity of the first daughter. \Example The example shows how to generate $D^{*+} \rightarrow D^{0}\pi^+$ \begin{verbatim} Decay D*+ 1.000 D0 pi+ VSS; Enddecay \end{verbatim} \Model{VSS\_MIX} \label{vssmix} \Auth{Ryd} \Usage{B1 B2}{dm;} \Expl Decays a vector particle into two scalar and generates the correct angular and time distributions for the particles in the decay $\Upsilon(4S) \rightarrow B^0\bar B^0$. The mass difference is supplied as an argument to the model \Example The example shows how to generate the mixture of mixed and unmixed $B^0$ and $\bar B^0$ events. \begin{verbatim} Define dm 0.474e12 Decay Upsilon(4S) 0.420 B0 anti-B0 VSS_MIX dm; 0.040 anti-B0 anti-B0 VSS_MIX dm; 0.040 B0 B0 VSS_MIX dm; Enddecay \end{verbatim} \Notes The user has to manually specify the fractions of mixed and un-mixed event through the branching fraction. This means that all this model does is to generate the right time distribution for the given final state. Use the new VSS\_BMIX model to generate mixing in the correct proportions using a single decay channel. See Section~\ref{sect:cpviolation} for more details about how mixing is implemented and how it works with CP violation. \Model{VSS\_BMIX} \label{vssbmix} \Auth{Kirkby} \Usage{B1 B2}{dm;} \Expl Decays a C=-1 vector particle into two scalar particles using $B^0 \bar B^0$-like coherent mixing. The two possible daughter particles must be charge conjugates and have the same lifetime. Their mass difference is supplied as an argument to the model, in units of $\hbar$/s. While the mass difference is a required arguement, $\Delta \Gamma / \Gamma$ and $\vert q/p \vert$ can be supplied as optional arguements, with defaults of 0 and 1 respectively. The examples below illustrate how this model accomadates aliased daughters. \Example The example shows how to generate $\Upsilon(4S)\rightarrow B^0 \bar B^0$ decays with coherent mixing (but without CP violating effects). \begin{verbatim} Define dm 0.474e12 Decay Upsilon(4S) 1.0 B0 anti-B0 VSS_BMIX dm; Enddecay \end{verbatim} to include a non-zero $\Delta \Gamma / \Gamma$: \begin{verbatim} Define dm 0.474e12 Define dgog 0.5 Decay Upsilon(4S) 1.0 B0 anti-B0 VSS_BMIX dm dgog; Enddecay \end{verbatim} and to specify $\vert q / p \vert$ \begin{verbatim} Define dm 0.474e12 Define dgog 0.5 Define qoverp 1.2 Decay Upsilon(4S) 1.0 B0 anti-B0 VSS_BMIX dm dgog qoverp; Enddecay \end{verbatim} Finally, aliased particles can be generated using this model \begin{verbatim} Define dm 0.474e12 alias myB0 B0 alias myanti-B0 anti-B0 Decay Upsilon(4S) 1.0 B0 anti-B0 myB0 myanti-B0 VSS_BMIX dm; Enddecay \end{verbatim} generates either {\tt B0 myanti-B0}, {\tt anti-B0 myanti-B0}, {\tt myB0 anti-B0}, or {\tt myB0 B0}. \Notes This model is similar to the VSS\_MIX model, but it eliminates the need to manually specify the fractions of mixed and un-mixed events through branching fractions. This approach has the effect that the resulting mixing distributions are necessarily self consistent, which is not true for the VSS\_MIX model when using the wrong branching fractions. See Section~\ref{sect:cpviolation} for more details about how mixing is implemented and how it works with CP violation. \Model{VVPIPI} \label{vvpipi} \Auth{Ryd} \Usage{V S S}{;} \Expl This decay model was constructed for the decay $\psi'\rightarrow J/\psi \pi^+\pi^-$ but should work for any $V\rightarrow V' \pi\pi$ decay in which the approximation that the $\pi\pi$ system can be treated as one particle which combined with the $V'$ meson is dominated by $S$-wave. The amplitude for the mass of the $\pi\pi$ sstem is given by $A\propto (m^2_{\pi\pi}-4m^{2}_{\pi})$. \Example \begin{verbatim} Decay psi(2S) 1.000 J/psi pi+ pi- VVPIPI; Enddecay \end{verbatim} %\Notes \Model{VVS\_PWAVE} \label{vvspwave} \Auth{Ryd} \Usage{V S}{|S| argS |P| argP |D| argD; } \Expl The decay of a vector particle to a vector and a scalar. The decay takes six arguments, which parameterizes the $S$, $P$, and $D$ wave amplitudes. The first two arguments are the magnitude and the phase of the $S$-wave amplitude, the third and forth are the $P$-wave amplitude and the last two are the $D$-wave amplitude. \Example The example below shows how to decay the $a_1^0$ in pure $P$ wave to $\rho\pi$. \begin{verbatim} Decay a_10 1.000 rho0 pi0 VVS_PWAVE 0.0 0.0 1.0 0.0 0.0 0.0; Enddecay \end{verbatim} \Notes This model has only been used yet for $P$-wave so further test are needed before it is safe to use use for nonzero $S$ and $D$ wave amplitudes. \Model{WSB} \label{wsb} \Auth{Lange, Ryd} \Usage{M L N}{;} \Expl This is a model for semileptonic decays of $B$, and $D$ mesons according to the WSB model~\cite{Wirbel85}. The first daughter is the meson produced in the semileptonic decay. The second and third argument is the lepton and the neutrino respectively. See Section~\ref{semileptonic} for more details about semileptonic decays. \Example The example shows how to generate $\bar B^0\rightarrow D^{*+}e\bar\nu$ \begin{verbatim} Decay anti-B0 1.000 D*+ e- anti-nu_e WSB; Enddecay \end{verbatim} \Notes This model does not include the $A_3$ form factor that is needed for non-zero mass leptons, i.e., tau's. If tau's are generated the $A_3$ form factor will be zero.