//---------------------------------------------------------------------- // File and Version Information: // $Id: // // Description: // Class PndEmcWaveformToDigi. Module to take the ADC waveforms and produces digi. // // Software developed for the BaBar Detector at the SLAC B-Factory. // Adapted for the PANDA experiment at GSI // // Author List: // Phil Strother Original Author // Dima Melnichuk - adaption for PANDA // Copyright Information: // Copyright (C) 1996 Imperial College // //---------------------------------------------------------------------- #include "PndEmcWaveformToDigi.h" #include "PndEmcWaveform.h" #include "PndEmcDigi.h" #include "PndEmcDigiPar.h" #include "PndEmcRecoPar.h" #include "PndEmcAsicPulseshape.h" #include "PndEmcPSAParabolic.h" #include "PndEmcPSAMatchedDigiFilter.h" #include "FairRootManager.h" #include "FairRunAna.h" #include "FairRuntimeDb.h" #include "TClonesArray.h" #include "TStopwatch.h" #include //#include using std::cout; using std::endl; using std::fstream; PndEmcWaveformToDigi::PndEmcWaveformToDigi(Int_t verbose, Bool_t storedigis) { fVerbose=verbose; fDigiPosMethod="depth";// "surface" or "depth" fEmcDigiRescaleFactor=1.08; fStoreDigis=storedigis; //fPndEmcDigiPositionDepth=6.2; } //-------------- // Destructor -- //-------------- PndEmcWaveformToDigi::~PndEmcWaveformToDigi() { } InitStatus PndEmcWaveformToDigi::Init() { // Get RootManager FairRootManager* ioman = FairRootManager::Instance(); if ( ! ioman ) { cout << "-E- PndEmcWaveformToDigi::Init: " << "RootManager not instantiated!" << endl; return kFATAL; } // Get input array fWaveformArray = (TClonesArray*) ioman->GetObject("EmcWaveform"); if ( ! fWaveformArray ) { cout << "-W- PndEmcWaveformToDigi::Init: " << "No PndEmcWaveform array!" << endl; return kERROR; } // Create and register output array fDigiArray = new TClonesArray("PndEmcDigi"); ioman->Register("EmcDigi","Emc",fDigiArray,fStoreDigis); fSampleRate=fDigiPar->GetSampleRate(); fSampleRate_PMT=fDigiPar->GetSampleRate_PMT(); fASIC_Shaping_int_time=fDigiPar->GetASIC_Shaping_int_time(); //s fPMT_Shaping_int_time=fDigiPar->GetPMT_Shaping_int_time(); //s fPMT_Shaping_diff_time=fDigiPar->GetPMT_Shaping_diff_time(); //s fCrystal_time_constant=fDigiPar->GetCrystal_time_constant(); //s fShashlyk_time_constant=fDigiPar->GetShashlyk_time_constant(); //s fNumber_of_samples_in_waveform=fDigiPar->GetNumber_of_samples_in_waveform(); fNumber_of_samples_in_waveform_pmt=fDigiPar->GetNumber_of_samples_in_waveform_pmt(); fEnergyDigiThreshold=fDigiPar->GetEnergyDigiThreshold(); fEmcDigiPositionDepthPWO=fRecoPar->GetEmcDigiPositionDepthPWO(); fEmcDigiPositionDepthShashlyk=fRecoPar->GetEmcDigiPositionDepthShashlyk(); cout<<"fEmcDigiPositionDepthPWO: "< params; params.push_back(30); // width params.push_back(fSampleRate); // Sample rate psaAlgorithm = new PndEmcPSAMatchedDigiFilter(params,fPulseshape); // std::vector params2; // params2.push_back(30); // width // params2.push_back(fSampleRate_PMT); // Sample rate psaAlgorithm_pmt = new PndEmcPSAParabolic(); // Determine normalisation constant for PndEmcWaveform PndEmcWaveform *tmpwaveform=new PndEmcWaveform(0,101010001, fNumber_of_samples_in_waveform); PndEmcWaveform *tmpwaveform2=new PndEmcWaveform(0,101010001, fNumber_of_samples_in_waveform_pmt); PndEmcHit *gevHit=new PndEmcHit(); gevHit->SetEnergy(1.0); gevHit->SetTime(0.); tmpwaveform->UpdateWaveform(gevHit, 0, false, 1., 0., fSampleRate, fPulseshape); tmpwaveform2->UpdateWaveform(gevHit, 0, false, 1., 0., fSampleRate_PMT, fPulseshape_pmt); Double_t tmpPeakPosition; Double_t tmpPeakPosition2; psaAlgorithm->Process(tmpwaveform,fWfNormalisation,tmpPeakPosition); psaAlgorithm_pmt->Process(tmpwaveform2,fWfNormalisation_pmt,tmpPeakPosition2); cout << "-I- PndEmcWaveformToDigi: Intialization successfull" << endl; return kSUCCESS; } void PndEmcWaveformToDigi::Exec(Option_t* opt) { TStopwatch timer; if (fVerbose>2){ timer.Start(); } // Reset output array if ( ! fDigiArray ) Fatal("Exec", "No Digi Array"); fDigiArray->Delete(); Double_t peakPosition; Double_t energy; Double_t digi_time; Int_t i_digi=0; //index of digi in TClonesArray Int_t hitIndex; Int_t detId; Int_t trackId; Int_t module; Int_t nWaveforms = fWaveformArray->GetEntriesFast(); //cout<<"PndEmcWaveformToDigi: "<At(iWaveform); hitIndex=theWaveform->GetHitIndex(); detId=theWaveform->GetDetectorId(); trackId=theWaveform->GetTrackId(); module=theWaveform->GetModule(); // Determine waveform maximum and its position if(module==5){ psaAlgorithm_pmt->Process(theWaveform,energy,peakPosition); energy/=fWfNormalisation_pmt; digi_time=peakPosition/fSampleRate_PMT; } else{ psaAlgorithm->Process(theWaveform,energy,peakPosition); energy/=fWfNormalisation; digi_time=peakPosition/fSampleRate; } if (energy>fEnergyDigiThreshold) { PndEmcDigi* myDigi = new((*fDigiArray)[i_digi]) PndEmcDigi(trackId,detId, energy, digi_time, hitIndex); myDigi->AddLink(FairLink("EmcWaveform", iWaveform)); i_digi++; } } if (fVerbose>2){ timer.Stop(); Double_t rtime = timer.RealTime(); Double_t ctime = timer.CpuTime(); cout << "PndEmcWaveformToDigi, Real time " << rtime << " s, CPU time " << ctime << " s" << endl; } } void PndEmcWaveformToDigi::SetParContainers() { // Get run and runtime database FairRun* run = FairRun::Instance(); if ( ! run ) Fatal("SetParContainers", "No analysis run"); FairRuntimeDb* db = run->GetRuntimeDb(); if ( ! db ) Fatal("SetParContainers", "No runtime database"); // Get Emc digitisation parameter container fDigiPar = (PndEmcDigiPar*) db->getContainer("PndEmcDigiPar"); // Get Emc reconstruction parameter container fRecoPar = (PndEmcRecoPar*) db->getContainer("PndEmcRecoPar"); } void PndEmcWaveformToDigi::SetStorageOfData(Bool_t val) { fStoreDigis = val; return; } ClassImp(PndEmcWaveformToDigi)