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Chapter 1

Introduction

To run an analysis or a simulation, initialization parameters are needed.

For the simulation one needs the full HADES geometry taking into account different target configurations and
the different alignment of detectors for a specific beam time. Some detectors need additional parameters stored in
a parameter ROOT file, for example ECAL (chapter 3).

Each task in the analysis needs special sets of parameters, which are stored in container classes in memory.
Some tasks might share the same container (example: geometry parameters are needed for digitization, tracking,
the event display, . . . ).

The parameters are valid for very different time scales.
Once a detector is built, some parameters are fixed for the whole lifetime of this detector (for example number of
wires in a given layer of a MDC). Containers holding such data must be initialized only once in an analysis.
Some parameters might change seldom, others more often (for example calibration parameters). In these cases,
a re-initialization might be needed during the analysis of several event files (To save memory and time, each
container is created only once).
A task might also change parameters during the analysis of an event file and it is then necessary to save these data
before a re-initialization.

In the analysis all initialization data are managed by the so-called runtime database (chapter 2).

Figure 1.1: Parameter interfaces

All parameters are permanently stored in the HADES Oracle database (chapter 4). It stores all actually valid and
historic parameters for all beam times and simulations.
Web-based interfaces (WebDB) provide additional access to the data in Oracle without running an analysis.

The design of the database tables is not the same for all parameter containers.
Some of the tables are closely related to the technical structure of the detectors, as they hold not only parameters
needed by the analysis, but also information about the electronic setup and the cabling. As a result the data are
spread over a large number of tables.
Other containers with large amounts of data in a tree like structure are stored in a certain fixed schema (tree-style
parameter containers).
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All these containers need special interface functions to retrieve and store the data.
But most parameter containers developed in the last years use a fixed layout and data are read and stored with a
base class interface (condition-style parameter containers).

Almost all parameter containers need a version management to keep track of changes (see 4.2).
One version is valid for one or more event files characterized by the run id. For the same run, even several versions
of parameters might exist, for example a first version of calibration parameters, a second version after a more
detailed analysis, etc. It must be possible to read also these historic data in the analysis.

Some parameters even come with different flavors, called context, for example wide cuts or strong cuts.

For daily work one needs an additional storage medium for the runtime database: ROOT files have been foreseen
to store parameter sets temporarily as objects.
For several reasons a local version management has been implemented:

• To run many jobs in parallel on the batch farm.

• To hold the parameters locally to avoid net traffic.

• To distribute the parameters within the collaboration when the direct access to Oracle is not possible or too
slow or when the newest data are not yet stored in Oracle.

The ROOT file may contain all parameters to run the analysis of a dedicated list of runs (subset of the parameter
versions in Oracle).

To have an easy way to edit or create parameters, an interface to ASCII files has been implemented as well. The
aim was not to store all data temporarily in ASCII files, but to have an easy way to change parameters with an
editor or to compare different versions. A local version management was not implemented.



Chapter 2

The runtime database

2.1 Schematic overview

Figure 2.1: HRuntimeDb class diagram

Features:
The parameters are stored in parameter containers (see 2.2)
The runtime database allows to create all parameter containers via the container factories (see 2.3).
Once a parameter container is created, it is added in the list of parameter containers and accessible in Hydra2 by
all tasks, which need these parameters.
The runtime database allows to specify one or two input sources and takes care, that the parameters are initialized
at the beginning of each run with the appropriate version (see 2.4).
The user may specify an output and the runtime database takes care, that the parameters are automatically written
to this output before the parameter container is initialized again or before it is deleted.
For each run it stores for each parameter container the input and output versions. This run catalog is, together with
the detector setups, written to the ROOT file output to be used as a local database for initialization (see 2.4.3).
For Oracle as input it allows to create a parameter ROOT file for all runs of a specified beam time and time range
(see 2.5.2).

2.1.1 The building blocks for parameter initialization and output
Loading the HYDRA libraries
When the shared libraries are loaded in ROOT, the container factories are created and added to the list of container
factories in the runtime database, which is implemented as a singleton.

Create Hades
The Hades constructor instantiates the runtime database (class HRuntimeDb) and creates an object of class
HSpectrometer.
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Hades * myHades = new Hades ;
HSpec t rome te r * spec = gHades−>g e t S e t u p ( ) ;
HRuntimeDb* r t d b = gHades−>getRunt imeDb ( ) ;

Figure 2.2: Flow chart of initialization

Create detectors
In the analysis one must create all detectors with their appropriate setup.
In an initialization macro it is also mandatory for all tree-style parameter containers because they use detector
specific I/O classes. Condition-style parameter containers use a base class I/O interface, a detector is not needed.

Each detector has its own class (HMdcDetector, HWallDetector, . . . ). They are all derived from the base
class HDetector. Each detector consists of one or more modules placed in the different sectors or directly in
the cave.

The code snippets below creates the Forward Wall detector (with sector = -1, because it sits in the cave) and the
MDC detector with 6 sectors, but one module missing (0 = module is absent, 1 = module in setup), and adds them
to the list of detectors in the HSpectrometer object.

HWal lDe tec to r * w a l l =new HWal lDe tec to r ;
I n t t wallMods [ ] ={1} ;
wa l l−>s e t M o d u l e s (−1 , wallMods ) ;
spec−>a d d D e t e c t o r ( w a l l ) ;

HMdcDetector * mdc=new HMdcDetector ;
I n t t mdcMods [ 6 ] [ 4 ] ={ {1 , 1 , 1 , 1} ,

{1 , 1 , 1 , 1} ,
{1 , 1 , 0 , 1} ,
{1 , 1 , 1 , 1} ,
{1 , 1 , 1 , 1} ,
{1 ,1 ,1 ,1} } ;

f o r ( I n t t i =0 ; i <6; i ++) { mdc−>s e t M o d u l e s ( i , mdcMods [ i ] ) ; }
spec−>a d d D e t e c t o r ( mdc ) ;

Create input and output for parameters
Here one creates the data sources for the parameters and sets them as first or second input in the runtime database.
Additionally one may specify an output.
Possible I/O types are Oracle, ROOT files, ASCII files.

Typically one uses two inputs

• if one wants to merge the data from two input sources into one ROOT file

• if one has some parameters in a file (set this as first input) not stored in Oracle, but all others should be read
from Oracle (set as second input)

There is a simple rule:
If a parameter container can be initialized from the first input, the second input is not used for this container.
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For a more detailed description of the parameter I/O classes and features see 2.4.
Here only a small example, which reads the data from Oracle and writes them to a ROOT file:

HParOra2Io * o r a =new HParOra2Io ;
ora−>open ( ) ;
r t d b−>s e t F i r s t I n p u t ( o r a ) ;

H P a r R o o t F i l e I o * o u t p u t =new H P a r R o o t F i l e I o ;
o u t p u t−>open ( ” params . r o o t ” , ”RECREATE” ) ;
r t d b−>s e t O u t p u t ( o u t p u t ) ;

Create parameter containers
Typically parameter containers are created by the parameter container factories in the runtime database.
If one wants to use a non-default context for a parameter container, one should set it before the parameter container
is created (see 2.3).

B o o l t HRuntimeDb : : addParamContex t ( c o n s t char c o n t e x t )

One creates the containers with

HParSet * HRuntimeDb : : g e t C o n t a i n e r ( T e x t t con ta ine rName ) ;

The function checks if the container exists already and, if not, creates it. It returns a pointer to the parameter
container, but with the base class type, and it must be casted to the concrete type to use the functions not available
in the base class, for example:

HWallRefWinPar * pPar =( HWallRefWinPar * ) ( r t d b−>g e t C o n t a i n e r ( ” WallRefWinPar ” ) ) ;

One may also create the parameter container via the constructor, but then one must also add it to the runtime
database to be later automatically initialized, stored in the output and finally deleted.

HWallRefWinPar * pPar =new HWallRefWinPar ( ) ;
r t d b−>a d d C o n t a i n e r ( pPar ) ;

In the analysis the parameter containers are created typically in the init functions of the tasks (called in
Hades:init()).
A few of them are also initialized, for example parameter containers needed to create other parameter containers
or to create the data structure for the unpackers. But these are exceptions.

Initialize parameter containers
All parameter containers can be initialized with the function call

B o o l t HRuntimeDb : : i n i t C o n t a i n e r s ( I n t t run Id , I n t t r e f I d , c o n s t T e x t t f i l eName ) ;
/ / r u n I d number i n t h e e v e n t h e a d e r u n i q u e l y d e f i n i n g t h e h l d f i l e o r s i m u l a t i o n run
/ / r e f I d r e f e r e n c e run i d ( d e f a u l t v a l u e : −1)
/ / i f != −1, a l l c o n t a i n e r s a r e i n i t i a l i z e d wi th t h e v e r s i o n s v a l i d f o r t h i s run
/ / f i l eName name of c u r r e n t e v e n t f i l e ( d e f a u l t NULL)

This function is automatically called in the Hades event loop for the first event of each file.
In a macro it must be called explicitly (eventually several times with different run ids).
The function loops over all parameter containers and calls their init function (see 2.2.1 for details).

In the analysis, the reference run id is set in the data source of the events and always necessary, if parameters are
not available for the file to be analyzed. One example are simulation runs where the simulation reference run was
not set in the configuration file (see 3.5.2 for details).

Delete Hades
Before one deletes the Hades object and with it the runtime database, one may want to see its content (in principle
one can do this everywhere in the macro, even multiple times)

r t d b−>s a v e O u t p u t ( ) ;
r t d b−>p r i n t ( ) ;

The function HRuntimeDb::saveOutput() loops over all parameter containers and writes them to the
output if not yet done. For a ROOT file as output, it also writes the detector setups and the version table, which
contains for each run the two input and the output versions, into the output file. Only the output versions are stored
in the file. These will be the input versions for the runs when the ROOT file is used as input.
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The function HRuntimeDb::print()lists the parameter containers, the version table and information about
the input(s) and output. (see Example 2.1.2)
Warning: If one calls this function without calling rtdb->saveOutput() before, the version table might be
misleading, because the input and output versions are stored in the version table when the write function is called
and for the current run this might have not been done yet.

2.1.2 A simple initialization macro
This macro initializes the parameter container HMagnetPar, which contains the magnet current, from Oracle for
three runs in beam time APR12 and writes it to a ROOT file.

{
/ / c r e a t e t h e Hades o b j e c t and g e t t h e p o i n t e r t o t h e r u n t i m e d a t a b a s e
Hades * myHades=new Hades ;
HRuntimeDb* r t d b =gHades−>getRunt imeDb ( ) ;

/ / d e f i n e t h e i n p u t
HParOra2Io * i n p u t = new HParOra2Io ;
i n p u t−>open ( ) ;
r t d b−>s e t F i r s t I n p u t ( i n p u t ) ;

/ / d e f i n e t h e o u t p u t
H P a r R o o t F i l e I o * o u t p u t = new H P a r R o o t F i l e I o ;
o u t p u t−>open ( ” t e s t . r o o t ” , ”RECREATE” ) ;
r t d b−>s e t O u t p u t ( o u t p u t ) ;

/ / c r e a t e t h e p a r a m e t e r c o n t a i n e r ( s )
HMagnetPar * pMagnetPar = ( HMagnetPar * ) ( r t d b−>g e t C o n t a i n e r ( ” MagnetPar ” ) ) ;

/ / i n i t i a l i z e t h e p a r a m e t e r c o n t a i n e r
r t d b−>i n i t C o n t a i n e r s (133602648) ; / / magnet o f f
r t d b−>i n i t C o n t a i n e r s (133656363) ; / / magnet on
r t d b−>i n i t C o n t a i n e r s (133656526) ; / / magnet on

/ / p r i n t t h e p a r a m e t e r s on t h e s c r e e n
pMagnetPar−>p r i n t P a r a m s ( ) ;

/ / s ave t h e o u t p u t ( w r i t e s t h e d a t a t o t h e f i l e )
r t d b−>s a v e O u t p u t ( ) ;

/ / p r i n t c o n t e n t o f t h e r u n t i m e d a t a b a s e on t h e s c r e e n
r t d b−>p r i n t ( ) ;

/ / d e l e t e t h e Hades o b j e c t
d e l e t e myHades ;

}

Result of rtdb->initContainers(133602648);

************************************************************

i n f o<HRuntimeDb>: i n i t i a l i s a t i o n f o r run i d 133602648
************************************************************

*************************************************************
O r a c l e h i s t o r y d a t e : 10−JUL−2015 2 2 : 1 3 : 3 0

*************************************************************
MagnetPar i n i t i a l i z e d from O r a c l e

When called the first time the history date, here the last parameter release for beam time APR12, is set. Then the
parameter container is initialized.

Result of rtdb->initContainers(133656363);

i n f o<HRuntimeDb>: MagnetPar w r i t t e n t o ROOT f i l e , v e r s i o n : 1
************************************************************

i n f o<HRuntimeDb>: i n i t i a l i s a t i o n f o r run i d 133656363
************************************************************

MagnetPar i n i t i a l i z e d from O r a c l e
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First the parameter container is written to the output with version number 1, then it is initialized for the next run.
The magnet current is different. This leads to a new version.

Result of rtdb->initContainers(133656526);

i n f o<HRuntimeDb>: MagnetPar w r i t t e n t o ROOT f i l e , v e r s i o n : 2
************************************************************

i n f o<HRuntimeDb>: i n i t i a l i s a t i o n f o r run i d 133656526
************************************************************

The parameter container is written to the output with version number 2, then it is initialized for the next run.
Because the start time of this run is in the validity time range of the version read for the previous run, the input
version is the same. The Oracle read function is not even called.

Result of pMagnetPar->printParams();

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−− MagnetPar −−−−−
−− C o n t e x t / Pu rpose : M a g n e t C u r r e n t S e t V a l u e s
−− D e s c r i p t i o n : Read from O r a c l e

V a l i d f o r Run Id 133656363
S t a t u s a t 10−JUL−2015 2 2 : 1 3 : 3 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c u r r e n t : I n t t 2500
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The call of rtdb->saveOutput() does not print anything on the screen because the last version was already
written into the file. The write function of the parameter container only stores also for this run the last output
version in the version table.

Result of rtdb->print();

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n f o<HRuntimeDb>: a c t u a l c o n t a i n e r s i n r u n t i m e d a t a b a s e
i n f o<HRuntimeDb>: MagnetPar Magnet c u r r e n t
i n f o<HRuntimeDb>: runs , v e r s i o n s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n f o<HRuntimeDb>: run i d
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n f o<HRuntimeDb>: c o n t a i n e r 1 s t−i n p u t 2nd−i n p u t o u t p u t
i n f o <133602648>: run : 133602648
i n f o <133602648>: MagnetPar 133602648 −1 1
i n f o <133656363>: run : 133656363
i n f o <133656363>: MagnetPar 133656363 −1 2
i n f o <133656526>: run : 133656526
i n f o <133656526>: MagnetPar 133656363 −1 2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n f o<HRuntimeDb>: i n p u t / o u t p u t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n f o<HRuntimeDb>: f i r s t I n p u t :
Orac le−D a t a b a s e : db−hades Username : h a d e s a n a
H i s t o r y d a t e : 10−JUL−2015 2 2 : 1 3 : 3 0
Hydra2 O r a c l e i n t e r f a c e
d e t e c t o r I / Os : HCondParIo HSpecParIo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n f o<HRuntimeDb>: s econd I n p u t : none
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n f o<HRuntimeDb>: Ou tpu t :
H P a r R o o t F i l e ** t e s t . r o o t

H P a r R o o t F i l e * t e s t . r o o t
KEY: HMagnetPar MagnetPar ; 2 Magnet c u r r e n t
KEY: HMagnetPar MagnetPar ; 1 Magnet c u r r e n t
KEY: HRun 133602648;1
KEY: HRun 133656363;1
KEY: HRun 133656526;1

d e t e c t o r I / Os : HCondParIo HSpecParIo
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Result of delete myHades;

c o n n e c t i o n t o O r a c l e c l o s e d

This ROOT file can be used as input to initialize the parameter containers for the three run ids in the ROOT file.
Other runs with the same field settings can only be initialized by using one of these run ids as reference run id,
for example

I n t t r e f R u n I d =133656363;
r t d b−>i n i t C o n t a i n e r s (133656688 , r e f R u n I d ) ; / / a l s o magnet on

The container will be initialized for run 133656688 with the same data as for 133656363 (version 2).

2.1.3 Initialization in an analysis macro
In the following only the parts relevant for initialization are described (without using the DST library).
One creates in the macro the detectors, the parameter input(s) and eventually a parameter output.
Then one defines the data source(s) and adds one or more files, eventually with a reference run. The data source
opens the first file and reads the run id in the header. If a reference run is defined by filename, it opens also this
file and reads its run id.
For HLD files one also adds the unpackers in the HLD source.
Then one defines the tasks respectively task sets.

The parameter containers are created when Hades::init() is called:

1. Initializes all containers already created.

2. Calls the init function of all detectors
For the MDC the parameter containers HMdcRawStruct and MdcGeomStruct are created and
initialized (needed to build other parameter containers and the data structures).

3. Calls the init functions of the data sources
The init function of a HLD source calls the init function of all unpackers, where the lookup tables are created.

4. Calls the init function of all tasks. Here all other parameter containers are created.

At this point all parameter containers are in the runtime database, but besides a few exceptions, not yet initialized.
This is done in the Hades event loop:

1. Before analyzing the first event of a file all containers are initialized.

2. Then the connection to Oracle is closed.

3. The re-init function of all tasks is called.
Some tasks calculate private data from the parameter containers and use them in the execute function.
If several files are analyzed in a chain (or for a ROOT file as input generated from several input files) step 1
- 3 is repeated. The connection to Oracle is automatically re-opened and closed again after initialization.

If one wants to change parameters in a container on-the-fly in the macro without creating a parameter file before
one can do this directly before the Hades event loop:

• One gets the pointer to the parameter container using the function
HParSet* HRuntimeDB::findContainer(Text_t* containerName).
It returns the pointer to an existing container (the constructor is not called).

• One initializes the parameter container (by calling its init() function)

• Now one changes the parameter(s).

• The parameter container must be set static to avoid a re-initialization
(by calling its function setStatic(Boot_t flag=kTRUE).

2.2 Parameter containers

2.2.1 HParSet, the base class for all parameter containers
This class defines the common data elements, some basic functionality and the virtual functions each container
class must implement for initialization and output.
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Data Members of HParSet:

• TString fName, TString fTitle
HParSet is derived from the ROOT class TNamed and inherits its data members. The name uniquely
identifies the container in the runtime database.

• TString paramContext
This is the name of the parameter context. A parameter context allows to support different flavors of the
parameters, which are valid for the same run start1. The context defined in the constructor is the default
context. Others might be set either via the container factory or explicitly in the macro.

• Bool_t status
By default this flag is kFALSE and the parameters are initialized for each run. Once set kTRUE, the container
is skipped in the automatic initialization in the runtime database.
Member functions:

void setStatic(Bool_t flag=kTRUE);
Bool_t isStatic();

• Bool_t changed
By default this flag is kFALSE and set kTRUE after each initialization, which signals, that the container
must be written to the output before the data are overwritten by the next initialization or before the container
is deleted. The write function then again resets the flag.
Member functions:

void setChanged(Bool_t flag=kTRUE);
Bool_t hasChanged()();

• Int_t versions[3]
It stores in versions[1] the version number from the first input, in versions[2] the one from the second input.
By default all versions are -1 (not initialized). If both version numbers are -1 after initialization, the
parameter container is not written to the output.
If one fills the parameter container in the macro and not via the runtime database, versions[1] must be set to
1.
Member functions:

void setInputVersion(Int_t v=-1,Int_t i=0);
Int_t getInputVersion(Int_t i);

The function void resetInputVersions() sets all input versions to -1 and the status flag to kFALSE,
but only for a non-static parameter container (status flag kFALSE).

• Text_t detName[20]
This is the name of the detector the container belongs to and set in the constructor of the derived class.
It is mandatory for all parameter containers which might initialize only a subset of the modules or want to
check if all modules in the setup are initialized. Geometry containers need it to retrieve the detector name
and setup from Oracle.

• TString author, TString description
These are the author and the description of the parameters in Oracle. They must be filled before the data can
be written into Oracle.

Functions implemented in the base class:

• virtual Bool_t init(HParIo*);
If the detector name is defined, it first creates an array corresponding to the setup array of this detector.
Then it checks, if the parameter container was initialized the last time from two inputs and in this case it
resets the input versions.
After this it tries to initialize the parameter container from the first input (if defined) in the runtime database
by calling the init function in the derived class (described below). If this fails, because the input cannot
provide the data or not all of them, it calls also the init function for the second input (if defined).
If the parameter container is then still not fully initialized it returns kFALSE, otherwise kTRUE.

1Beam and simulation runs may have the same run start, but the parameters might be different. To distinguish between them in Oracle, the
identifier of the context id is different for the two run types, but the name is the same.
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• virtual Int_t write();
This function gets the output pointer from the runtime database and, if defined, with this calls the function
in the derived class (described below).

• void print();
It prints information about the container (context, author, description, versions, status, changed ...).

Functions implemented in the derived class:

• virtual Bool_t init(HParIo*,Int_t*);
This function initializes the container from an input using the detector specific interface class of type
HDetParIo (see section 2.4 for details).

• virtual Int_t write(HParIo*);
It writes the container to an output using the detector specific interface class of type HDetParIo.
If one wants to write a parameter container into Oracle, one must use this write function with the pointer to
the Oracle output as parameter. One cannot use the base class write function without an argument.

• void clear();
This function resets the parameters to the default values and sets the input/output versions to -1.

2.2.2 Tree-style parameter containers
These parameter containers are directly derived from HParSet. Some of them have a tree-like class structure.
Since 2002 we use a standardized table layout in Oracle for a certain group of parameter containers:

• They have a tree-like structure: sector, modules, ..., cells.

• Typically they hold a large amount of data.

• They might be closely related to hardware modules (the data stick to the hardware module, not to the position
of this module).

• They need a version management.

• The data elements will probably not change anymore in future code releases.

• The data consistency is checked in Oracle via constraints.

Typical examples are the low-level parameter containers as unpacker lookup tables, thresholds, calibration
parameters, . . . .

Although the parameters themselves are individual (they may even be stored in several tables), they use a standard
layout for the version management.

• Advantage:

– This allows to write parts of the analysis interface code with cut-and-paste or to reuse code (even
without using dynamic SQL for performance reasons).

– It is possible to use a generic WebDB GUI for validation and queries.

– In the ASCII interfaces one can at least partially use template functions for read/write.

• Disadvantage:

– It needs more coding.

– The Oracle tables, views, interfaces need to be implemented and later eventually changed by an expert.
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2.2.3 Condition-style parameter containers
If the list of data members of a tree-like parameter container changes, the “expert“ must change the Oracle part.
This type is therefore not appropriate for parameter containers as for example conditions (this lead to the name)
used in high level analysis, where the code is not stable and may change with every major code release.

To overcome this problem a new type of parameter container has been developed. The data are stored in a generic
way in Oracle and the interfaces for Oracle, ROOT and ASCII files are almost completely implemented in base
classes.

• Advantage:

– Minimizes code development

– No need for any new development in Oracle (no expert needed)

– Properly implemented, it is almost code independent. People can use old and new code to read the
data from Oracle.

– Allows to store also large arrays or even ROOT objects in binary format and to read these data very
fast.

• Disadvantage:

– All parameters are independent. One cannot put any constraints on the data in Oracle. Consistency
checks need to be implemented in the code of the parameter container.

The parameter container must inherit from HParCond, derived by itself from HParSet.
Three functions must be implemented:

1. void clear(void);
This function is called automatically before an initialization (new version of parameters).

2. void putParams(HParamList*);
It fills all persistent data members into the list for writing (for Oracle and ASCII files).

3. Bool_t getParams(HParamList*)
It fills all persistent data members from the list after reading. It returns false, when the data of a data member
is not in the list.

The Oracle and ASCII read interface fills all valid parameters for the parameter container into a list in class
HParamList (with list elements of type HParamObj) used for transfer. The getParams function takes from
the list only the parameters in the actual used code version calling overloaded functions for the different parameter
types.
See class documentation for details.

ALL data are stored in Oracle as binaries (small amount of data in RAW format, larger ones as Binary Large
Objects (BLOBS). For ROOT objects (Hydra2 classes derived from TObject) also the streamer info is stored.

Design considerations:
Try to avoid the use of ROOT objects in HParamList because they cannot be inspected by the ORACLE WebDB
interface and they cannot be stored in an ASCII file. Histograms for example can be serialized into a TArrayD with
the HHistConverter before putting them to the list. An example is the parameter container HParticleCandFillerPar.

2.3 Parameter container factories
Each library, which contains parameter container classes, must also contain a parameter container factory, derived
HContFact. It is created when the library is loaded into ROOT and added to the list of container factories in the
runtime database.

Each factory contains the list of parameter container names and possible contexts in the corresponding library.
Examples: HBaseContFact contains all parameter containers in libBase, HRichContFact the ones in
libRich.
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Functionality
• They allow to create the parameter containers via the function call:

HParSet* getContainer(const char* containerName);

• For each parameter container they know the possible contexts and they take care for the name of the container
when it is created.
Having different names, they can be read and written from/to the same ROOT file without the need to change
the version management.
Naming convention:

– If no context was specified before, the parameter container is created with its default context and the
name is the standard name.

– For non-default contexts, the name of the parameter container is concatenated as
”standard container name” + ” ” + ”context name”

• Different, but somehow related containers may share the same context.
Setting this context only once guarantees that all these containers are initialized consistently. For example
all geometry containers share the same context ”GeomProduction“.

Usage
The user typically does not access the container factory directly in the macro, but calls functions in the runtime
database:

Bool_t HRuntimeDb::addParamContext(const char* context)
This function sets the context of all parameter containers, which accept this context. If a parameter container is
created later by the factories it will be created with this context.

HParSet* HRuntimeDb::getContainer(Text_t* standardContainerName)
The function loops over all container factories to find the factory responsible for the parameter container with
the specified name. The factory then checks, if a special context is set, eventually concatenates the name and
then checks, if a container with this name eventually exists already in the runtime database. If not, it creates the
container and adds it in the runtime database.
The function returns the pointer to the container, which must be casted to the special container class type. It returns
NULL, if the container was not created.

2.4 Parameter input/output

2.4.1 Class Design
The class design for I/O was developed according to the following requirements:

• Provide interfaces to Oracle, ROOT files and ASCII files

• To avoid dependencies, each detector has its own classes implementing the concrete read and write functions

• The actually used I/O is specified in the macro.

• The interface to Oracle is a shared library not included by the other libraries, except libDst.
To compile this library one needs the Oracle client, which might not be installed.

The base class HParIo defines the virtual functions each type of I/O must implement, for example to close the I/O
or to check, if the I/O is open.

The derived classes implement the open function (different arguments for the different types). This class is
instantiated in the macro and then set as input or output in the runtime database.
It inherits the data member detParIoList from the base class. This list contains the detector I/O classes (with the
read and write functions). When the I/O is opened, these detector I/Os are automatically created for all detectors
in the actual setup. This is the reason, why the detectors must be created in the macro before an I/O is opened.
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Figure 2.3: Hydra2 I/O classes

Each detector I/O has a name, which is identical for each source type, for example “HCondParIo“. This name is
used in the init function for a parameter container to find the corresponding detector I/O. The init function itself
does not know, which type of I/O is actually used.

The interfaces ”HCondParIo” and ”HSpecParIo” for condition style parameter containers and parameter containers
in libBase are always created in the I/O, even if no detector is created in the macro (for example HCondParOra2Io).

To minimize the code in the specific detector I/O classes, common functionality and utility functions are
implemented in the base classes HDetParRootFileIo, HDetParAsciiFileIo and HDetParOra2Io.

2.4.2 The Oracle interface HParOra2Io
All interfaces are implemented in the shared library libOra.
To compile this library, one needs the Oracle client. The code uses the Oracle precompiler ProC/C++.
The interface allows to read actual and historic data for all parameter containers and to write parameter containers
into Oracle.
Shown here are only typical examples to be used in macros.

The following lines open a connection for the default analysis user HADES ANA (only privilege to read data and
to compile the code) and sets it as first input in the runtime database rtdb.

HRuntimeDb* r t d b =gHades−>getRunt imeDb ( ) ;
HParOra2Io * o r a =new HParOra2Io ;
ora−>open ( ) ;
r t d b−>s e t F i r s t I n p u t ( o r a ) ;

When the function initContainers() in the runtime database is called with a certain run id (or reference
run id), the parameter containers will be initialized with the data valid for the last parameter release for the
corresponding beam time or simulation project. If no parameter release exists yet, the actual valid data for this run
will be read.

One may force to read the data valid for this run at a certain point in time by setting the history date.
To read always the last version of the data:

ora−>s e t H i s t o r y D a t e ( ”now” ) ;

To read the data valid in the past (the default for the time is 00:00:00):

ora−>s e t H i s t o r y D a t e (01−JAN−2015 1 2 : 0 0 : 0 0 ” ) ;
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To read the data of a certain parameter release (here parameter release for DST production APR12 generation 7):

ora−>s e t H i s t o r y D a t e ( ” APR12 dst gen7 ” ) ;

If one wants to store data in Oracle one must connect as a user which has the “insert“ privilege for this parameter
container. The interface prompts for the password.

HParOra2Io * o r a =new HParOraIo ;
B o o l t r c =ora−>open ( ” w a l l o p e r ” ) ;
i f ( r c ) {

r t d b−>s e t O u t p u t ( o r a ) ;
. . .

}

HOra2Info (a data member of HParOraIo) provides various utility functions to retrieve run ids, file names, lists of
runs for beam times and simulation projects. Here some examples:

• If one only knows the hld filename one can get the corresponding run id with

I n t t r u n I d = ora−>g e t O r a 2 I n f o ( )−>ge tRunId ( ” be1211123593401 . h l d ” ) ;

• To get the filename for a run id:

T S t r i n g f i l e n a m e ;
B o o l t found = ora−>g e t O r a 2 I n f o ( )−>ge tDaqFi l ename (134959174 , f i l e n a m e ) ;

• To get the run id for the last run in a specified beam time (useful for testing):

I n t t r u n I d = ora−>g e t O r a 2 I n f o ( )−>g e t L a s t R u n ( ”APR12” ) ;

• To get a list of HLD files for a specified beam time (mandatory) and (optional) time range and run prefix:

T L i s t * l i s t O f F i l e s = ora−>g e t O r a 2 I n f o ( )−>g e t L i s t O f H l d F i l e s ( ”APR12” ,
”20−APR−2012” , ”20−APR−2012 2 3 : 5 9 : 5 9 ” , ” be ” ) ;

This list contains objects of type HRunInfo with data elements file name, run id, run start, run stop and
number of events (>0).

2.4.3 The ROOT file interface HParRootFileIo
In the ROOT file parameter containers are stored as objects. The file can hold different versions of the same object
(the variable fCycle in TKey).
Every time an object is written it gets automatically a new version incrementing the former version by 1, starting
with 1 in each newly created file. The information which run corresponds to which version of each parameter
container is stored in the ROOT file together with the data.
By default the Read() or Find() functions provided by ROOT read the object with the highest version. A
retrieval of another version is possible by adding ”;version number” to the name of the parameter container.
When initializing from a parameter ROOT file, the first step is to get the version for this run from the version table
and then to read this version.
If the run id is not found in the ROOT file, the parameter containers cannot be initialized for this run. But one may
use another run in the ROOT file as reference run.

To write into a ROOT file, put in the macro (standard ROOT file options RECREATE, NEW, ...):

H P a r R o o t F i l e I o * o u t p u t =new H P a r R o o t F i l e I o ;
o u t p u t−>open ( ” wa l lPa rams . r o o t ” , ”RECREATE” ) ;
r t d b−>s e t O u t p u t ( o u t p u t ) ;

To read from a ROOT file (the default option is "READ"):

H P a r R o o t F i l e I o * i n p u t =new H P a r R o o t F i l e I o ;
i n p u t−>open ( ” wa l lPa rams . r o o t ” ) ;
r t d b−>s e t F i r s t I n p u t ( i n p u t ) ;
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2.4.4 The ASCII file interface HParAsciiFileIo
The ASCII interface does not implement a version management.
The reading starts always at the beginning of the file. It reads the first data it finds for the parameter container. A
second version in the same file would never be read.

The structure in the parameter file is always the same:

1. The name of the parameter container in [] brackets

2. The data (different formats)

3. At the end a line starting with #

Any comment lines starting with // or # (not in the data block!) are ignored.

To write into an ASCII file, put in the macro:

H P a r A s c i i F i l e I o * o u t p u t =new H P a r A s c i i F i l e I o ;
o u t p u t−>open ( ” wa l lPa rams . t x t ” , ” o u t ” ) ;
r t d b−>s e t O u t p u t ( o u t p u t ) ;

To read from an ASCII file (the default option is "in"):

H P a r A s c i i F i l e I o * i n p u t =new H P a r A s c i i F i l e I o ;
i n p u t−>open ( ” wa l lPa rams . t x t ” ) ;
r t d b−>s e t F i r s t I n p u t ( i n p u t ) ;

2.5 Creation of parameter files for the analysis
To run a full analysis one needs a long list of parameter containers. Some of them have different versions for the
runs in a beam time.

IMPORTANT: On the batch farm it is not allowed to initialize from Oracle more than a few jobs, because it puts
quite some load on the Oracle server, if many jobs start in parallel. To avoid overload only a certain number of
jobs may read data in parallel (implemented in our software). The others have to wait until the number of jobs
reading actively is below a certain limit. This not only slows down your jobs on the batch farm, but hurts also all
other people on desktop machines, which want to read parameters from Oracle.
Use a ROOT parameter file, if you want to run many jobs on the batch farm!

Furthermore people outside GSI may not have an Oracle client installation and they need a parameter ROOT file
to run the analysis locally.

2.5.1 Parameter file for a single run
Define in the analysis macro the output in the runtime database. This is typically a ROOT file output, because
some parameter container with binary output cannot be written to an ASCII file.

H P a r R o o t F i l e I o * o u t p u t =new H P a r R o o t F i l e I o ;
o u t p u t−>open ( ” a l l P a r a m s . r o o t ” , ”RECREATE” ) ;
r t d b−>s e t O u t p u t ( o u t p u t ) ;

Run the analysis of the file with one event.

Then use this file for the analysis of all files which share the same parameters.
In the macro you must specify the run id, which is in the file, as reference run id.
This works fine for the analysis of simulation runs, where anyhow all files have to be initialized with the run
id of the simulation reference run (see 4.4.2 Simulation projects and reference runs). (This is not needed if the
reference run id was set in the simulation configuration file (.dat file) and stored this way in the event header.)
For a high-level analysis this might work too, because the needed parameter containers typically have only one
version for a complete beam time.

Also for testing during code development it is recommended to use such a ROOT file, because typically one
analyzes the same run many times.
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2.5.2 Parameter file generated with HParamFileGenerator
It allows to generate a parameter file from Oracle containing all run ids in a beam time (or some part) with only a
few lines of code in the analysis macro:
In an old-fashioned analysis macro:

1. Instead of defining an output in the runtime database, one adds the following lines after the definition of the
inputs (rtdb is the pointer to the run time database):

/ / g e n e r a t e a p a r a m e t e r f i l e f o r beam t ime AUG14
i f ( ! r t d b−>makeParamFi le ( ” paramsAug14 . r o o t ” , ” aug14 ” ) ) {

d e l e t e gHades ;
re turn ;

}

The ROOT file output is created by the runtime database automatically.
By specifying a time range one may restrict the beam time for example to a single day or the days where
beam was on target.

/ / g e n e r a t e a p a r a m e t e r f i l e f o r day 239 of beam t ime AUG14
i f ( ! r t d b−>makeParamFi le ( ” paramsAug14239 . r o o t ” , ” aug14 ” ,

”27−AUG−2014 0 0 : 0 0 : 0 0 ” , ”27−AUG−2014 2 3 : 5 9 : 5 9 ” ) ) {
d e l e t e gHades ;
re turn ;

}

2. Add the following line at the end of the macro directly before the delete of Hades:

r t d b−>s a v e O u t p u t ( ) ;

Finally run the macro with 1 or 2 events.

The function HRuntimeDb::makeParamFile(...) takes at least two arguments: the name of the ROOT
output parameter file and the experiment name (not case-sensitive).
You may shrink the time range by specifying also a range begin and/or a range end (accepts dates, hld-filenames
or run ids).

The ROOT file is opened with option ”CREATE” and will fail, if the file exists already. Therefore one should
check the return code of the function.

After the first event, the runtime database has the complete list of actually needed parameter containers. The
initialization of all runs in the specified range is activated in HRuntimeDb::saveOutput(). Using the
function HOra2Info::getListOfRuns(...) it gets from Oracle the complete list of runs in the specified range and
initializes for each run all parameter containers.
The loop does not break, if a parameter container cannot be initialized (this is different from a standard
initialization with HRuntimeDb::initContainers(Int_t) which would break the loop).

Additionally to the ROOT parameter file a log-file is created with the same name, but with extension ”.log“.
This file contains four parts:

1. The list of runs with filename, run id, start and stop time

2. The list of parameter containers

3. The number of runs, not fully initialized and for these runs the list of missing containers. Search for ”Error”
to find these messages.

4. The version management table for all runs

The function HRuntimeDb::makeParamFile(...) may also be called with the name of a simulation
project, for example ”aug14sim”. In this case the parameter containers will be initialized for all reference runs in
this project.
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The HADES geometry

3.1 Overview
The full HADES geometry needed to run a simulation is stored in Oracle:

• ideal geometry

• different alignment versions for the simulation of beam times

• the information, which detector parts are present in a simulation project (or beam time).

The geometry interface (class HGeomInterface) allows

• to read the media, geometry and hit definitions from Oracle and to create the geometry in

– HGeant2
– the ROOT geometry modeler (class TGeoManager) for browsing, drawing, overlap checking and to

use eventually Virtual Monte Carlo (VMC) in the future

• to create ASCII files and to read these files for initialization of HGeant2 and the ROOT TGeoManager

• to write the geometry and the parameters for hit definition into Oracle

• to generate geometry files taking into account the alignment of detectors

A WebDB interface provides access to the full geometry in folder Geometry (see 4.8).

Figure 3.1: Geometry interfaces

In the analysis only a small part of the geometry is needed for digitization, tracking, and the event display. It is
stored in parameter containers (see Section: 3.6) in the runtime database.
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3.2 Geometry classes
Fig. 3.2 shows an overview of the geometry classes in Hydra2. The classes in the grey shaded area are implemented
in hydra2/base/geometry. They are also used by the geometry parameter containers for the analysis (see 3.6).

All other classes are only needed to create the geometry in HGeant2 or the ROOT TGeoManager (see 3.5) and
implemented in hydra2/simulation and hydra2/orasim.

Hydra2 libraries needed for simulation:

• libHydra

• libSimulation

• libOraSim (optional, requires the Oracle client installation)

Figure 3.2: Geometry classes

3.3 Detector sets
All detector sets are derived from the base class HGeomSet, which implements most functionality.
The detectors typically only define some detector specific variables (detector name, number of keep-in volumes
and number of modules) and simple functions, which return the name or the substring for keep-in volumes,
modules and inner parts.

Detectors with sensitive volumes also have a class for the hit definition, derived from the base class HGeomHit.
The detector hit class only implements the function, which returns the IDTYP, the identifier of the hit set (eventually
calculated from the name of the sensitive volume).
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Cave
Keyword: cave
Geom class: HGeomCave
Parameter container: HSpecGeomPar

It is a single volume with name CAVE and has no mother and therefore no transformation.
The origin (0.,0.,0.) of the local coordinate system of the cave is the same as the origin of the field map.
The ASCII file contains only this single volume. All daughters of the cave are defined in separate files.

Sectors
Keyword: sectors
Geom class: HGeomSectors
Parameter container: HSpecGeomPar

The set consists of 6 volumes SEC1 ... SEC6 all with the same shape (PGON), medium and dimensions. Looking
in beam direction the sectors are counted clockwise starting with the uppermost in positive y-direction.
All components of the translation vector describing the position of the sector coordinate system in the cave must
be 0..

Rich
Keyword: rich
Geom class: HGeomRich
Parameter container: HRichGeometryPar

The module (volume with name RICH sitting directly in the CAVE) contains a tree of volumes with names all
starting with ’R’.
The volume RTAM is the mother volume for the target.

The analysis geometry container HRichGeometryPar is not derived from the base class HDetGeomPar and does
not read any information from the standard geometry tables in Oracle. The RICH has its own tables (without
version management), which are only for the ideal position (no alignment).

Target
Keyword: target
Geom class: HGeomTarget
Parameter container: HSpecGeomPar

The target components (targets and support structures) sit in the RICH volume RTAM. To position the target
components properly it is necessary to check the LAB-position of RTAM.
All target components have names starting with ’T’.
The targets must have the name TARG for a single target and TARGxx for a segmented target with identical
segments, where xx is the number of the target. Several individual targets (different medium and/or size) must
have names starting with ’TX’.
In an alignment geometry version the RICH is shifted, while the target volumes are at ideal z-position in the
RICH.

The analysis interface reads only the target volumes from Oracle, not the support structure. To be independent
from the RICH and to account for alignment, the transformation of all volumes is stored in the Lab-system.

MDC
Keyword: mdc
Geom class: HGeomMdc
Parameter container: HMdcGeomPar

The MDC consists of 4 modules in each sector:
plane 1 DR1M1 ... DR1M6
plane 2 DR2M1 ... DR2M6
plane 3 DR3M1 ... DR3M6
plane 4 DR4M1 ... DR4M6
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The dimensions of the modules in different sectors are the same, but can have different positions (alignment).
All sub-volumes in the MDC have names starting with ”D1”...”D4”.
The sensitive volumes (layers) must have 4-character names. The 4th character is the number of the layer (for
example D1S4 is the sensitive volume in layer 4 of plane 1).

TOF
Keyword: tof
Geom class: HGeomTof
Parameter container: HTofGeomPar

The TOF wall consists of 8 TOF modules in each sector:
HGeant2 module index Volume names Analysis module index

15 T15F1 ... T15F6 0 (outermost module)
16 T16F1 ... T16F6 1
17 T17F1 ... T17F6 2
18 T18F1 ... T18F6 3
19 T19F1 ... T19F6 4
20 T20F1 ... T20F6 5
21 T21F1 ... T21F6 6
22 T22F1 ... T22F6 7

In HGeant the counting is done in positive y-direction and opposite in the analysis. 1

Each TOF module contains 8 identical sensitive cells (example T15S1 is the TOF rod closest to the beam line).

RPC
Keyword: rpc
Geom class: HGeomRpc
Parameter container: HRpcGeomPar

The detector consists of one module in each sector: ”ESKO1” ... ”ESKO6”.
All volumes have names starting with ’E’, the sensitive cells with “EG”.

SHOWER
Keyword: shower
Geom class: HGeomShower
Parameter container: HShowerGeometry

The Shower consists of a keep-in volume in each sector with names ”SHK1” ... ”SKH6”.
Each keep-in volume contains 3 modules:

module 1 SH1M1 ... SH1M6
module 2 SH2M1 ... SH2M6
module 3 SH3M1 ... SH3M6

All daughter volumes in the modules have names starting with ”S1”, ”S2” and ”S3”.
Each module contains only one sensitive volume (for example S1AI in first module SH1M). 2

Forward Wall
Keyword: wall
Geom class: HGeomWall
Parameter container: HWallGeomPar

The Forward Wall consists of a single module with name ”WALL” sitting directly in the CAVE.
All daughter volumes have names starting with ’W’. The name of the sensitive cells start with “W00” followed by
a number 1, 2, 3 for the different cell sizes and the copy numbers.

1The Tofino, a part of TOF in HGeant1 (module 22...26), was removed in Oracle for HGeant2, but the HGeant2 FORTRAN code was not
changed. A simulation with 22 TOF modules (without Tofino) was needed in the past by the kickplane algorithm to create new parameters.

2In the analysis the cells are the wire planes S1SW...D3SW, daughters in the center of the sensitive volumes.
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Start
Keyword: start
Geom class: HGeomStart
Parameter container: HStartGeomPar (only Start detector = module 0)

All volumes start with ’V’. The Start detector module has the name “VSTA” (mother volume “RTAM“ in RICH),
the Veto module, if present, the name “VVET” (mother volume “RICH“). Some geometry versions contain
additional volumes for the delta-electron shielding.
For the pion beam times in 2014, the diamonds in the Start detector (VSTD1 . . . VSTD9) were implemented as
sensitive volumes with new code in HGeant2 and Hydra2. The Oracle storage and interfaces may change in the
future, in case the layout would be different.

EMC (ECAL)
Keyword: emc
Geom class: HGeomEmc
Parameter container: HEmcGeomPar

All daughter volumes start with’G’.
The EMC consists of one module in each sector: GMOM1 ... GMOM6, each containing 163 identical daughters.
The name of the sensitive volume (Lead glass crystal) is ’GLEA’.
The parameters for the external tracking of the Cherenkov photons are stored in a parameter ROOT file (not in
Oracle).

Coils
Keyword: coils
Geom class: HGeomCoils

The magnet coils consist of one module in each sector: CKIV1 ... CKIV6.
All volumes have names starting with ’C’.

Frames
Keyword: frames
Geom class: HGeomFrames

This set contains all support structures and beam pipes, which are not parts of a detector 3, as independent modules.
All of them may have substructures.
All volumes have names starting with ’F’. A module can be positioned in the cave ( having a 4-character name
”Fxxx”) or in the sectors (having 5-character names ”Fxxx1” ...”Fxxx6”).

User defined modules
Keyword: user
Geom class: HGeomUser

This set allows to read and create up to 9 independent user defined modules (no common keep-in volume) with
names ”U1KI1” ... ”U1KI6” up to ”U9KI1” ... ”U9KI6”. The 5th character is the number of the sector and is
missing, if the volume sits directly in the CAVE.
All sub-volumes have names starting with ”U1” ... ”U9”.

3.4 HADES geometry formats

3.4.1 Volume definition
GEANT3 and ROOT:
In GEANT3 and ROOT the volume size is specified with the minimum number of parameters needed and for
most shapes relative to the center of a volume. A TUBE for example is described by three parameters: half
length, inner and outer radius. The center of the volume is positioned relative to the center of the mother, described
by x, y, z and a 3× 2 rotation matrix.

3The MDC frustum and the stiffener bars in MDC4 (do not fit into the keep-in volume) are defined here.
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In case the size of the volume changes asymmetrically (for example the tube gets longer at one end, but the
daughters should keep their absolute positions), the center of the volume shifts. Not only the transformation of the
volume relative to its mother must be changed, but also the transformations of its daughters to keep their position.
Furthermore, the orientation of the internal coordinate system is shape dependent, for example different for the
trapezoid shapes TRAP and TRD1.
All sizes, distances and positions are in cm.

HADES:
In the HADES geometry format, each volume has it own local coordinate system, which must not be positioned in
the center of the volume. The transformation defined by a position vector and a 3× 3 rotation matrix describes the
transformation of the local coordinate system of the volume relative to the local coordinate system of its mother.
Some shapes are defined by a list of points (BOX, TRAP, TRD1, ...). This makes it easier to transfer the data from
technical drawings into the file format, especially for trapezoids.4

The geometry interface calculates automatically the parameters and transformation needed to create the volume
inside GEANT or ROOT.
All sizes, distances and positions are in mm.

Figure 3.3: The classes HGeomVolume and HGeomNode

A volume (except CAVE, which has no mother and therefore also no transformation) is defined by:

1. name of the volume

2. name of the mother volume

3. GEANT shape of the volume

4. name of the medium (= material)

5. points or parameters from technical drawings (depend on the shape)

6. position (x y z) of the coordinate system, in which the points are given, in the coordinate system of the
mother

7. 3× 3 rotation matrix of the coordinate system listed row-wise as vector

Names of volumes:
All names start with a detector specific character (see 3.3 Detector sets).
Each volume has a name with at least 4 characters (upper case letters). Only the first 4 characters are used by
GEANT (the name of the volume).
All volumes of which several copies exist (several nodes of the same volume) have names with 5 or more characters.
These additional characters are always digits typically ranging from 1 to the maximum number of volumes with
the same 4-character GEANT name.
For example the outermost TOF (module number 22) contains 8 identical cells T22S1 ... T22S8. The volume T22S
is created only once via GSVOLU(...) but positioned 8 times via GSPOS(...).
The names of the sensitive volumes must have a special structure defined for each detector.

4Originally it was intended to import the geometry data directly from 3D-CATIA drawings by marking the volume points in CATIA, export
them as IGES files and store them in Oracle.
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Name of the mother:
Each volume is positioned in a mother. The name of the mother has 4 characters (in upper case letters) plus
eventually a number, if several copies of the mother exist. This number must be the number of the first node of the
mother, typically 1.
(In GEANT only 4 characters are used, but the additional number is needed to find the mother in Oracle or in the
file.)

GEANT Shape:
Each volume has a shape (4 characters in upper case letters). Implemented in the program are the shapes
BOX , PGON, PCON, TRAP, TRD1, TUBE, TUBS, CONE, CONS, SPHE, ELTU (see section 3.4.2).

Medium:
Each volume is filled with a medium given by the name of the medium (see section 3.4.3). If not initialized from
Oracle all media must be defined in a common media file.
The predefined media in GEANT are not used.

Points:
Each volume has parameters describing the dimensions. The number of these parameters and their meaning depend
on the shape of the volume. This is explained in section 3.4.2.

Coordinate system:
Each volume has a local coordinate system in which the parameters are defined.
Its position and orientation relative to the coordinate system of the mother volume is described by a translation
vector T and a 3x3 rotation matrix R according to the equation

x=R*x’+T

where x is the vector in the coordinate system of the mother and x’ the vector in the coordinate system of the
daughter. The matrix R is listed row-wise as a vector with 9 components.
Each shape has its own intrinsic orientation, which is defined similar to the GEANT definition except for TRAP
and TRD1 (see 3.4.2).
As long as all volumes in a module are not rotated one may use the coordinate system of the module as the base
coordinate system in which all points are given.

Important: The rotation matrix must be specified with a precision of at least 10−6. Otherwise one may get a lot
of warnings from GEANT that the coordinate system is not orthogonal. The ROOT overlap checker would also
detect them as overlaps or extrusions.
Furthermore it may cause rounding problems when storing the geometry in Oracle, because here the
transformations of all inner volumes are stored relative to the module coordinate system even for multiple
rotations.

Volumes of which several copies exist may use a shortened input structure in the ASCII file:
For the first volume all information above must be defined. For the other copies specified later in the file one must
only specify

• name of the volume

• name of the mother

• translation vector of the coordinate system

• rotation matrix of the coordinate system

3.4.2 Volume shapes
Each shape is defined by a variable number of ’points’ (one in each line of the input file), each having 1-3
components. Apart from the shapes with 8 corners (BOX , TRAP, TRD1) the parameter are partially similar to
the ones in GEANT. Each shape has an intrinsic coordinate system. They have the same orientation as in GEANT
except for TRAP and TRD1.

BOX (class HGeomBrik)
It has 8 corners described by the x, y, z coordinates.
For example the master volume CAVE is implemented as a large BOX.
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Figure 3.4: Some volume shapes

TRAP (class HGeomTrap)
The coplanar front and back planes are trapezoids with centers not necessarily on a line parallel to the z-axis.
Typical examples are the MDC modules with back planes larger than the front planes.
A TRAP has 8 corners described by the x, y, z coordinates. The corners are counted clockwise starting at the lower
left corner of the front plane.
The intrinsic coordinate system of a TRAP is different from the one in GEANT. The y-axis points from the smaller
side in x-direction to the larger one. A TRAP not rotated in a BOX has the same intrinsic coordinate system as the
BOX. In GEANT the y- and x-axis point in the opposite directions.

TRD1 (class HGeomTrd1)
The coplanar front and back planes are trapezoids of the same size and with centers on a line parallel to the z-axis.
Examples are the MDC wire planes.
The shape has 8 corners described by the x, y, z coordinates. In HADES the intrinsic coordinate system of a TRD1
is the same as for a TRAP, different from the definition in GEANT.

PGON (class HGeomPgon)
The polygon has a variable number of points with 1-3 components:

point 0 NZ number of planes perpendicular to the z-axis where the section is given

point 1
azimuthal angle PHI1 at which the volume begins
opening angle DPHI of the volume
number NPDV of sides of the cross section between the phi limits

point 2ff
z coordinate Z of the section
inner radius RMIN at position z
outer radius RMAX at position z

The sectors SEC1...SEC6 are implemented as PGON.

PCON (class HGeomPcon)
The polycon has a variable number of points with 1-3 components:

point 0 NZ number of planes perpendicular to the z-axis where the section is given

point 1 azimuthal angle PHI1 at which the volume begins
opening angle DPHI of the volume

point 2ff
z coordinate Z of the section
inner radius RMIN at position z
outer radius RMAX at position z

The RICH volume RMET filled with Methan is implemented as PCON.
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SPHE (class HGeomSphe)
Is is a spherical shell segment described by 3 points with 2 components:

point 0 inner radius RMIN of the shell
outer radius RMAX of the shell

point 1 starting polar angle THE1 of the shell
ending polar angle THE2 of the shell

point 2 starting azimuthal angle PHI1 of the shell
ending azimuthal angle PHI2 of the shell

The RICH mirror RMIR is implemented as SPHE.

TUBE (class HGeomTube)
This shape has 3 points with 2-3 components:

point 0 x, y, z coordinate of the center of the circle at the beginning of the TUBE

point 1 inner radius RMIN
outer radius RMAX

point 2 x, y, z coordinate of the center of the circle at the end of the TUBE
Typical examples are the solid targets (with RMIN = 0).

TUBS (class HGeomTubs)
A TUBS is a segment of a TUBE. It has 4 points with 2-3 components:

point 0 x, y, z coordinate of the center of the circle at the beginning of the TUBS

point 1 inner radius RMIN
outer radius RMAX

point 2 x, y, z coordinate of the center of the circle at the end of the TUBS

point 3 starting angle PHI1 of the segment
ending angle PHI2 of the segment

Examples are the 60 degree segments of the Carbon beam pipe FOUC1...FOUC6, one in each sector.

CONE (class HGeomCone)
This conical tube has 4 points with 2-3 components:

point 0 x, y, z coordinate of the center of the circle at the beginning of the CONE

point 1 inner radius RMN1 at the beginning of the CONE
outer radius RMX1 at the beginning of the CONE

point 2 x, y, z coordinate of the center of the circle at the end of the CONE

point 3 inner radius RMN2 at the end of the CONE
outer radius RMX2 at the end of the CONE

An example is the volume TARG (filled with liquid Hydrogen) of the LH2 target.

CONS (class HGeomCons)
A CONS is a segment of a CONE. It has 5 points with 2-3 components:

point 0 x, y, z coordinate of the center of the circle at the beginning of the CONS

point 1 inner radius RMN1 at the beginning of the CONS
outer radius RMX1 at the beginning of the CONS

point 2 x, y, z coordinate of the center of the circle at the end of the CONS

point 3 inner radius RMN2 at the end of the CONS
outer radius RMX2 at the end of the CONS

point 4 starting angle PHI1 of the segment
ending angle PHI2 of the segment

ELTU (class HGeomEltu)
This shape has 3 points with 2-3 components:

point 0 x, y, z coordinate of the center of the ellipsoid at the beginning of the ELTU

point 1 semi-axis P1 along x
semi-axis P2 along y

point 2 x, y, z coordinate of the center of the ellipsoid at the end of the ELTU

Important: A TUBE, TUBS, CONE, ELTU cannot be rotated by different x- and y-values of the starting and
ending circles or ellipsoids. They have to be identical. A rotation can only be defined by a rotation matrix.



26 CHAPTER 3. THE HADES GEOMETRY

3.4.3 Material and media definition in HGeant2
• Each medium is characterized by a name

HADES naming convention: capital letters, ending with $.

• The names of the materials and the media in GEANT are identical.

• For each medium all parameters needed by the GEANT routines GSMATE, GSMIXT, GSTMED and
GSCKOV are defined.

• The predefined materials in GEANT are not used.

The following parameters are needed:
Parameter Description

int ncomp

number of components in the material
ncomp = 1 for a basic material
>1 mixture, WMAT contains the proportion by weights
<1 mixture, WMAT contains the proportion by number of atoms

float aw[ncomp] atomic weights A for the components
float an[ncomp] atomic numbers Z for the components
float dens density DENS in g cm(**-3)
float radleng radiation length RADL (only for a basic material)
loat wm[ncomp] weights WMAT of each component in a mixture (only for a mixture)
int sensflag sensitivity flag ISVOL (1 for sensitive media, 0 for insensitive ones)
int fldflag field flag IFIELD
float fld maximum field value FIELDM in kilogauss
float epsil boundary crossing precision EPSIL
int npckov number of values used to define the optical properties of the medium.

Comments can only be placed before a medium definition in separate lines all starting with //.

Examples:

GOLDTARGET$
1 196 .967 79 1 9 . 3 0 .33508
0 1 15 0 .001
0

/ / s e n s i t i v e medium wi th 2 components s p e c i f i e d by number o f atoms i n t h e m i x t u r e
SCINTILLATOR$
−2 12 .011 1 .008 6 1 1 . 0 3 9 10
1 0 15 0 .001
0

The variable npckov is 0 for all optically inactive media except some special media used in the RICH and in the
ECAL to track the Cerenkov photons.
These media have additional parameter arrays:

float ppckov[npckov] photon momentum in eV
float absco[npckov] absorption length in case of dielectric and of absorption probabilities in case of a metal
float effic[npckov] detection efficiency
float rindex[npckov] refraction index for a dielectric, rindex[0]=0 for a metal

The following parameters used in the GEANT tracking routines are normally not read. The default values are -1
and the real values are automatically calculated by GEANT.

float madfld maximum angular deviation TMAXFD due to the field
float maxstep maximum step permitted STEMAX
float maxde maximum fractional energy loss DEEMAX
float minstep minimum value for step STMIN

To set the values explicitly one must add the following line in the medium file:

AUTONULL

After this keyword each medium must specify these 4 parameters in one additional line.
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3.4.4 Hit definition in HGeant2
The file names for the hit definition must have the suffix .hit and contain the detector specific keyword “rich“,
”mdc”, ...(see section 3.3 Detector sets).
The files must contain the following parameters, needed for the GEANT routines GSDET and GSDETH:

Line Variable Description
1 string CHSET the name of the hit set
2 int NH the number of hit components (maximum 30)
3 string array CHNAMH NH names of the hit components
4 int array NBITSH NH numbers of bits in which to pack the components of the hits
5 float array ORIG NH numbers of offsets applied before packing the hit values
6 float array FACT NH numbers of scale factors applied before packing the hit values

Comments can only be placed before a detector hit definition as separate lines all starting with //.

Example:

/ / Forward Wall h i t d e f i n i t i o n
WLSC
11

X Y Z TOF PART ITRA ELOS IDET PMOM INWV TLEN
30 30 30 30 8 14 30 12 30 4 30

340 .00 340 .00 340 .00 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0
1 . 0 e +04 1 . 0 e +04 1 . 0 e +04 1 . 0 e +12 1 . 0 e +00 1 . 0 e +00 1 . 0 e +07 1 . 0 e +00 1 . 0 e +07 1 . 0 e +00 1 . 0 e +04

3.5 Geometry interface for HGeant2 and ROOT

3.5.1 Configuration file geaini.dat
The configuration file for HGeant2 consists of three parts:

1. The list of GEANT key words and parameters ended with END

2. The geometry configuration and eventually a parameter ROOT file

3. The field map, optional list of event input files, configuration of the ROOT output tree and output file name

Part 1 is read only relevant for a simulation and read by the HGeant2 subroutine hgeakey.F.
Part 2 and 3 are read in HGeant2 by the c++ function HGeantInput::readFileNames() and stored in
various data members depending on special keywords or name/file extensions.

Described here is only the initialization part of the geometry.
In HGeant2 the function hgeomcreatesetup.cc (called from ugeom.F) instantiates the geometry interface
HGeomInterface, configures it (sets the builder HGeomGeant3Builder, file or Oracle input, parameter
file), sets the run id and reads and creates the geometry.
In a pure Hydra2 application, for example the creation of geometry files from Oracle (see 3.5.3), part 2 of the
configuration file is read by the geometry interface. Part 1 and 3, if existing, are ignored.

Example: Configuration file for an APR12SIM simulation:

!
! GEANT key words
!
PMCF 1
AUTO 1
KINE 0
FMAP 2
FPOL 0 .7215
MXST 25000
JVER 2 2 0
BEAM 1 . 1 . 1230 . 0 . 0 . 0 .
SECO 3 1
CKOV 1
LOSS 1
DRAY 1
SWIT 0 0 0 0 0 1 0
TRIG TRIGGER NUM
ETA 37 .30 30 .20 21 .00 4 . 7 5 6 . 0 7 . 1 e−2
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TIME 0 1000000 1000000
SPLIT 1800000000
FILE 1
END ! End of g f f r e a d
/ /
/ / ******************************************************************
/ /
/ / −−−− geomet ry i n i t i a l i z e d from O r a c l e −−−−−−−−−−−−−−−−−−−−−−−−−−−
SimulRefRunDb : a p r 1 2 s i m m e d i u m f i e l d a l i g n a u a u
His to ryDa teDb : now
/ /
/ / ******************************************************************
/ /
/ / −−−− f i e l d map −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ cvmfs / hades . g s i . de / param / f i e l d / f l d r p z u n f . map
/ /
/ / −−−− b r a n c h e s i n t h e ROOT o u t p u t t r e e −−−−−−−−−−−−−−−−−−−−−−−−−−−
k i n e . t u p
r i c h . t u p
mdc . t u p
t o f . t u p
shower . t u p
w a l l . t u p
r p c . t u p
/ /
/ / −−−− i n p u t f i l e ( s ) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ misc / kempte r / p r o j e c t s / AuAu / run urqmd / o u t / Au15Au urqmd bmax4 1000evts . e v t
/ /
/ / −−−− o u t p u t f i l e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t e s t . r o o t

3.5.2 Keywords and file extensions
Special keywords (specified as ”keyword” + ”: ” + ”value”) and file extensions are used to read and create the
geometry.

• DbSupport:
This keyword accepts two values:

– ON (default)
This creates the Oracle interface class HGeomOra2Io.

– OFF In this case the geometry must be fully initialized from .geo and .hit files. This is the standard
value when running a simulation on the batch farm.

• SimulRefRunDb:
This is the keyword to read the full geometry including the hit definition from Oracle.
The value is the name of a simulation reference run. This defines the detector setup and the geometry version
of each detector part. The corresponding run id is set in the event header of the ROOT output file.

SimulRefRunDb : a p r 1 2 s i m m e d i u m f i e l d a l i g n a u a u

• HistoryDateDb:
This is the keyword to set the history date of the geometry in Oracle.
As in the analysis by default the geometry of the last parameter release for the simulation project is read
from Oracle or “ now” if no release exists.

His to ryDa teDb : now
/ / Hi s to ryDa teDb : 01−NOV−2013 0 0 : 0 0 : 0 0

• ParameterFile:
With this keyword one may specify a parameter ROOT file for example needed to create the MDC geometry
with wires or to read the histograms for the external tracking of Cerenkov photons in the ECAL modules
and the lookup table for the photomultipliers.

• SimulRefRunId: (HGeant2 only)
With DbSupport OFF the run id is by default 0. In the analysis one needs to set the reference run id for
initialization.
As an alternative one can set the run id here and this way add it in the event header of the output file.
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• DebugFile: (HGeant2 only)
For debugging of a new geometry it might be helpful to get the parameters calculated by the program and
used to call the GEANT FORTRAN routines. The file extension must be “.txt”.

• .geo
This is the file extension of the geometry or media ASCII files. For a detector with sensitive volumes also
the corresponding .hit file must be defined.

• .hit
This is the file extension of an ASCII file containing the hit definition of a detector with sensitive volumes.

• gdb
It is possible to mix input from Oracle and input from file. The part of the HADES detector read from Oracle
is specified by

” keyword f o r t h e d e t e c t o r p a r t ” + ” gdb ”

All media must be read from file.
In the example below the media and the target are read from file, the CAVE and the RICH from Oracle. All
other parts are missing and therefore not created.5

SimulRefRunDb : a p r 1 2 s i m m e d i u m f i e l d a l i g n a u a u
His to ryDa teDb : now
/ /
/ misc / i l s e / svn / hydra2 / macros / Geom / p ion / media new . geo
cave gdb
r i c h g d b
/ misc / i l s e / svn / hydra2 / macros / Geom / p ion / t a r g e t n e w . geo

• .setup
Independent if one reads from Oracle or from files, always the full setup of the detectors is read and would
be created.
In Hydra2 the default setup for the MDC are 24 modules and for the TOF the 8 outer modules.
To create only a subset of detectors one must specify a file with extension .setup in the configuration file.
Below is an example how to define subsets:

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / L ine 1 c o n t a i n e s t h e d e t e c t o r name ( lower−c a s e ) i n [ ] b r a c k e t s .
/ / L ine 1 − 6 s p e c i f i y t h e s e t u p i n each s e c t o r wi th 1 = ” i n s e t u p ” ,
/ / 0 = ” n o t i n s e t u p ” .
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / NOV02 MDC s e t u p
[ mdc ]
SEC1 1 1 1 1
SEC2 1 1 0 0
SEC3 1 1 1 0
SEC4 1 1 1 1
SEC5 1 1 0 0
SEC6 1 1 1 0

3.5.3 Production of geometry ASCII files for HGeant2
The interface allows to store the geometry read from Oracle in ASCII files. Then these file may be used for
initialization for example on the batch farm.

1. Step: Configuration file
The file must contain the name of the simulation reference run and eventually a history date, but no .geo or .hit
files.
Example: ora2files.dat

SimulRefRunDb : a p r 1 2 s i m m e d i u m f i e l d a l i g n a u a u
His to ryDa teDb : now

5By reading only the media from file and some other parts from Oracle it is possible to create only a subset of the HADES detector.
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2. Step: ROOT macro ora2files.C
One must only specify the configuration file and the output directory.
{

/ / c o n f i g u r a t i o n f i l e
T S t r i n g c o n f i g F i l e = ” o r a 2 f i l e s . d a t ” ;

/ / o u t p u t d i r e c t o r y ( must e x i s t )
T S t r i n g o u t p u t D i r = ” . / geom12001 ” ;

/ / ******************************************************

HGeomInter face * i n t e r f a c e =new HGeomInter face ;

HGeomOra2Io* o r a I n p u t =new HGeomOra2Io ;
o r a I n p u t−>open ( ) ;
i n t e r f a c e−>s e t O r a c l e I n p u t ( o r a I n p u t ) ;

B o o l t r c = i n t e r f a c e−>readGeomConfig ( c o n f i g F i l e . Data ( ) ) ;

HGeomAsciiIo * o u t p u t =new HGeomAsciiIo ;
o u t p u t−>s e t D i r e c t o r y ( o u t p u t D i r . Data ( ) ) ;
i n t e r f a c e−>s e t O u t p u t ( o u t p u t ) ;

B o o l t r c = i n t e r f a c e−>r e a d A l l ( ) ;
i f ( r c ) {

i n t e r f a c e−>w r i t e A l l ( ) ;
/ / HGeomSet* s e t = i n t e r f a c e−>f i n d S e t ( ” t a r g e t ” ) ;
/ / i f ( s e t ) i n t e r f a c e−>w r i t e S e t ( s e t ) ;
/ / i n t e r f a c e−>w r i t e M e d i a ( ) ;

}
d e l e t e i n t e r f a c e ;

}

It generates separate files for the media and all detector parts with file names
” keyword f o r t h e d e t e c t o r p a r t ” + ” a c t u a l d a t e and t ime ” + ” . geo ”

and for detectors with sensitive volumes also the hit files with extension ”.hit”.

The commented lines show an example how to write only a single .geo file.

3.5.4 Initialization from ASCII Files
With all .geo and .hit files created from Oracle one can switch OFF the Oracle support and replace the geometry
part in the configuation file:
/ /
/ / SimulRefRunDb : a p r 1 2 s i m m e d i u m f i e l d a l i g n a u a u
/ / H i s to ryDa teDb : now
/ /
DbSupport : OFF
SimulRefRunId : 12001
/ /
geom12001 / media 230615155440 . geo
geom12001 / cave 230615155440 . geo
geom12001 / r i c h 2 3 0 6 1 5 1 5 5 4 4 0 . geo
geom12001 / t a r g e t 2 3 0 6 1 5 1 5 5 4 4 0 . geo
geom12001 / s e c t 2 3 0 6 1 5 1 5 5 4 4 0 . geo
geom12001 / mdc 230615155440 . geo
geom12001 / c o i l s 2 3 0 6 1 5 1 5 5 4 4 0 . geo
geom12001 / to f 230 6151 5544 0 . geo
geom12001 / shower 230615155440 . geo
geom12001 / f rames 230615155440 . geo
geom12001 / s t a r t 2 3 0 6 1 5 1 5 5 4 4 0 . geo
geom12001 / wa l l 230615155440 . geo
geom12001 / rpc 230615155440 . geo
/ /
geom12001 / r i c h 2 3 0 6 1 5 1 5 5 4 4 0 . h i t
geom12001 / mdc 230615155440 . h i t
geom12001 / to f 230 6151 5544 0 . h i t
geom12001 / shower 230615155440 . h i t
geom12001 / s t a r t 2 3 0 6 1 5 1 5 5 4 4 0 . h i t
geom12001 / wa l l 230615155440 . h i t
geom12001 / rpc 230615155440 . h i t
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If a file is missing, the corresponding detector part will not be created. This way one can create only a subset of
the HADES detector.

3.5.5 Initialization of the ROOT TGeoManager
The interface allows to launch the geometry inside ROOT (class TGeoManager) with a special builder class
HGeomRootBuilder which creates the ROOT objects of type TGeoVolume, TGeoNode, ... with the ROOT
specific shape, transformation and material classes.

With the TGeoManager one may

• check a new geometry for overlaps and extrusion

• browse the geometry tree, materials, overlaps and draw volumes and its daughters in 3D as wire frames

• draw the geometry with OpenGL for nice colored pictures

Below an example macro. The configuration file is typically the same as the one for a HGeant2 simulation.

{
/ / s p e c i f y c o n f i g u r a t i o n f i l e
T S t r i n g c o n f i g F i l e =” g e a i n i . d a t ” ;

HGeomInter face * i n t e r f a c e =new HGeomInter face ;

B o o l t r c = i n t e r f a c e−>readGeomConfig ( c o n f i g F i l e . Data ( ) ) ;
i f ( ! r c ) p r i n t f ( ” Read of GEANT c o n f i g f i l e f a i l e d !\ n ” ) ;

i f ( r c ) r c = i n t e r f a c e−>r e a d A l l ( ) ;
i f ( ! r c ) p r i n t f ( ” Read of geomet ry f a i l e d !\ n ” ) ;

/ / c r e a t e ROOT TGeoManager
TGeoManager* geom = new TGeoManager ( ”HadesGeom” , ”HADES geomet ry ” ) ;

/ / c r e a t e b u i l d e r c l a s s f o r ROOT volumes and nodes
HGeomRootBuilder * b u i l d e r =new HGeomRootBuilder ( ” b u i l d e r ” , ”geom b u i l d e r ” ) ;
b u i l d e r−>se tGeoManager ( geom ) ;
i n t e r f a c e−>se tGeomBui lde r ( b u i l d e r ) ;

i f ( r c ) r c = i n t e r f a c e−>c r e a t e A l l ( ) ;
i f ( ! r c ) p r i n t f ( ” C r e a t i o n o f geomet ry f a i l e d !\ n ” ) ;

d e l e t e i n t e r f a c e ;

i f ( r c ) {
/ / check f o r o v e r l a p s and e x t r u s i o n s
geom−>CheckOver laps ( 0 . 0 0 0 1 ) ; / / ROOT u s e s cm !
geom−>P r i n t O v e r l a p s ( ) ;

/ / draw geomet ry and o v e r l a p s wi th TBrowser
TBrowser * b rowse r =new TBrowser ;

/ / draw volumes wi th OpenGL
TGLViewer* v =( TGLViewer * ) gPad−>GetViewer3D ( ) ;
v−>S e t S t y l e ( TGLRnrCtx : : kWireFrame ) ;
geom−>S e t V i s O p t i o n ( 0 ) ;
geom−>SetMaxVisNodes ( 4 0 0 0 ) ;
geom−>D e f a u l t C o l o r s ( ) ;
/ / draw mother volume of t a r g e t and S t a r t d e t e c t o r
TGeoVolume* v o l =geom−>GetVolume ( ”RTAM” ) ;
vol−>Draw ( ” o g l ” ) ;
geom−>S e t V i s L e v e l ( 1 ) ; / / v i s i b i l i t y l e v e l

} e l s e {
d e l e t e geom ;

}
}
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3.5.6 Comparison of geometry versions
In Hydra2 it is possible to compare different geometry versions (still missing in the public Oracle WebDB GUI)
by using the function HGeomSet::compare(HGeomSet&). It loops over all volumes in the tree, tries to find
the volume with the same name in the referenced list and checks it for differences.

Recipe:

1. Create first interface and read the geometry from the first input

2. Create second interface and read the geometry from the second input

3. Find the sets in the first and second interface and compare them

Both inputs might be Oracle or geo files.
This way one can compare two Oracle versions (different simulation reference runs or different history dates for
the same reference run), geo files with the geometry in Oracle or different geo file versions.

The macro below compares for example a full geometry read from Oracle with the full geometry read from geo
files.
{

/ / s p e c i f y t h e two c o n f i g u r a t i o n f i l e s
T S t r i n g c o n f i g F i l e 1 =” a p r 1 2 s i m f r o m o r a c l e . d a t ” ; / / O r a c l e
T S t r i n g c o n f i g F i l e 2 =” a p r 1 2 s i m f r o m f i l e s . d a t ” ; / / geo f i l e s

/ / r e a d f u l l geomet ry from f i r s t i n p u t , h e r e from O r a c l e
HGeomInter face * i n t e r f a c e 1 =new HGeomInter face ;
HGeomOra2Io* o r a I n p u t =new HGeomOra2Io ;
o r a I n p u t−>open ( ) ;
i n t e r f a c e 1−>s e t O r a c l e I n p u t ( o r a I n p u t ) ;
i n t e r f a c e 1−>readGeomConfig ( c o n f i g F i l e 1 . Data ( ) ) ;
i n t e r f a c e 1−>r e a d A l l ( ) ;

/ / r e a d f u l l geomet ry from second i n p u t , h e r e from ASCII f i l e s
HGeomInter face * i n t e r f a c e 2 =new HGeomInter face ;
i n t e r f a c e 2−>readGeomConfig ( c o n f i g F i l e 2 . Data ( ) ) ;
i n t e r f a c e 2−>r e a d A l l ( ) ;

/ / l i s t o f a l l p o s s i b l e d e t e c t o r p a r t s
T S t r i n g s e t s [ 1 2 ] = {” cave ” , ” s e c t ” , ” r i c h ” , ” t a r g e t ” , ” s t a r t ” , ”mdc” ,

” t o f ” , ” r p c ” , ” shower ” , ” w a l l ” , ” c o i l s ” , ” f r a me s ” } ;

HGeomSet * s e t 1 = NULL, * s e t 2 = NULL;

f o r ( I n t t i =0 ; i <12; i ++) {
c o n s t char * name = s e t s [ i ] . Data ( ) ;
s e t 1 = i n t e r f a c e 1−>f i n d S e t ( name ) ;
s e t 2 = i n t e r f a c e 2−>f i n d S e t ( name ) ;
i f ( s e t 1 == NULL && s e t 2 == NULL) c o n t in u e ;
i f ( s e t 1 != NULL && s e t 2 != NULL) {

c o u t << ” **************************************************************** ” << e n d l ;
c o u t << ” *** ”<< name << e n d l ;
c o u t << ” **************************************************************** ” << e n d l ;
s e t 1−>compare (* s e t 2 ) ;

} e l s e {
c o u t << ” **************************************************************** ” << e n d l ;
i f ( s e t 1 != NULL && s e t 2 == NULL) c o u t << name << ” m i s s i n g i n c o n f i g 2 ” << e n d l ;
i f ( s e t 1 == NULL && s e t 2 != NULL) c o u t << name << ” m i s s i n g i n c o n f i g 1 ” << e n d l ;
c o u t << ” **************************************************************** ” << e n d l ;

}
}

d e l e t e i n t e r f a c e 1 ;
d e l e t e i n t e r f a c e 2 ;

}

The output lists for each detector separately the differences for the name of the mother, name of the medium,
the shape, the shape parameters, the positioning vector of the intrinsic coordinate system and the rotation matrix:

0 = same, 1 = different, same if identical.
A summary at the end shows if both versions contain the same list of volumes.
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Here an example where the medium was changed:

. . .
****************************************************************
*** mdc
****************************************************************
name mother medium shape p o i n t s pos r o t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DR1M1 same
D1F1 same
D1I1 same
D1F2 same
D1I2 same
D1A1 same
D1G1 0 1 0 0 0 0
D1C2 0 1 0 0 0 0
D1A2 same
. . .
Number o f volumes i n f i r s t l i s t : 169
Number o f d i f f e r e n t volumes : 94
Number o f volumes not found i n second l i s t : 0
Number o f a d d i t i o n a l volumes i n second l i s t : 0
****************************************************************
. . .

3.5.7 Storing a new geometry version in Oracle
The way how to store new geometry versions in Oracle is described in the separate document
“Administration guide for the HADES Oracle database DB-HADES”, chapter ”HGEOM, the geometry
account“.
It includes an example macro and screen shots of the WebDB interface to create a new geometry version or to fix
a bug, to insert new media and to validate geometry versions for a beam time or simulation project.

3.6 Geometry parameter containers for the analysis

3.6.1 The geometry containers for detectors
All detectors except RICH 6 have geometry containers derived from the base class HDetGeomPar.
In two arrays the parameter container stores the sizes and positions of volumes forming a geometry tree with 2
levels: detector modules and components (the detector cells) in these modules.

1. The array modules stores the LAB-transformation of all modules in the setup. Each object of type
HModGeomPar has a name, a name of the reference module and a pointer to this reference module set
during filling. Typically modules of the same type (for example MDC plane 1 modules) are copies in all
sectors. Their geometry can be described by one reference module, only the position of the individual
modules is different.

2. The second array refVolumes stores the geometry volumes of the reference modules (objects of type
HGeomCompositeVolume derived from base class HGeomVolume). Each module holds an array of
its components (also of type HGeomVolume).
Each volume has a name, a shape, shape dependent points, a mother name and a transformation relative to
the mother (see fig. 3.3).
Here the mother of all reference modules is the CAVE. Its transformation is the LAB-transformation, not
the sector transformation.

The Oracle interface reads the geometry of the detector modules and cells from the same tables, which contain the
full geometry for simulation. First it reads the names of the modules and cells from tables in the detector accounts.
As example the MDC geometry container HMdcGeomPar:
HMdcParOra2Io::readModGeomNames(...) reads the module name for each sector and MDC plane,
HMdcParOra2Io::readLayerGeomNames(...) reads the name of the sensitive volumes for each MDC
plane and layer.

6The RICH geometry container RichGeometryParameters (class HRichGeometryPar) is a condition-style parameter container and contains
no volume information.
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With these names it retrieves the volume parameters using functions in the base class HDetParOra2Io. 7

For beam runs typically only the ideal geometry of the detectors and the target is validated, often the same for
several beam times. Only the alignment, stored separately in Oracle, changes more often, sometimes even for
different DST generations 8.
The analysis interface first reads the (ideal) geometry valid for the run and fills the parameter container.
In a second step it reads the valid alignment data, if existing, and with these LAB-transformations overwrites the
transformations in the array modules (but not the transformation of the reference module).

For simulation runs it only reads the version valid for the run.

3.6.2 The geometry container SpecGeomPar
It stores the geometry volumes of the cave, the sectors and the targets (without the target holder and the supporting
foils).
HGeomVolume* getCave(void); returns the cave
HGeomVolume* getSector(const Int_t n); returns the sector with index n (0. . . 5)
Int_t getNumTargets(void); returns the number of targets
HGeomVolume* getTarget(const Int_t n); returns the sector with index n
The cave has no mother and no transformation. The transformations of the sectors and the targets are the LAB-
transformations (mother CAVE).
The Oracle interface is implemented in HSpecParOra2Io. For real runs the targets may have an alignment
which overwrites the ideal positions. It is stored in Oracle via the write function.

3.6.3 Alignment
In Oracle the alignment is implemented as a standard tree-style parameter container. The write function of the
geometry container creates a new version and stores the LAB-transformations of each module, respectively target
(see example macro). The version must be validated with the WebDB interface for tree-style parameter containers.

Example macro to store the alignment

This macro initializes the geometry parameter container of the Start detector (only module with index 0) from
ASCII file for the beam time AUG14 and stores the alignment in Oracle.

{
Hades * myHades=new Hades ;
HRuntimeDb* r t d b =gHades−>getRunt imeDb ( ) ;
HSpec t rome te r * spec =gHades−>g e t S e t u p ( ) ;

I n t t s t a r t M o d s [ ] = {1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
spec−>a d d D e t e c t o r ( new H S t a r t 2 D e t e c t o r ) ;
spec−>g e t D e t e c t o r ( ” S t a r t ” )−>s e t M o d u l e s (−1 , s t a r t M o d s ) ;

H P a r A s c i i F i l e I o * i n p u t =new H P a r A s c i i F i l e I o ;
i n p u t−>open ( ” s ta r tGeomParAug14 . t x t ” ) ;
r t d b−>s e t F i r s t I n p u t ( i n p u t ) ;

HParOra2Io * o r a =new HParOra2Io ( ) ;
ora−>open ( ” db−hades ” , ” h a n a l 2 ” ) ;
r t d b−>s e t O u t p u t ( o r a ) ;

HStar t2GeomPar * pStar tGeom = ( HStar t2GeomPar * ) ( r t d b−>g e t C o n t a i n e r ( ” S ta r t2GeomPar ” ) ) ;
r t d b−>i n i t C o n t a i n e r s (207913886) ;

pStartGeom−>s e t A u t h o r ( ” I l s e Koenig ” ) ;
pStartGeom−>s e t D e s c r i p t i o n (

” S t a r t d e t e c t o r a l i g n m e n t f o r beam t ime AUG14 , based on i d e a l v e r s i o n 6 ” ) ;
pStartGeom−>w r i t e ( o r a ) ;

d e l e t e myHades ;
}

7The ASCII interface is implemented in the base class HDetParAsciiFileIo, the ROOT file interface in HDetParRootFileIo.
8Only for the “final“ alignment a new full geometry version is produced and stored in Oracle for simulations.
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3.6.4 Transformations between different coordinate systems
The class HGeomTransform provides functions to transform a point implemented as HGeomVector defined in
the local coordinate system into the coordinate system of the mother or the daughter.

HGeomVector HGeomTransform::transFrom(const HGeomVector& p) const
transforms a point v1 from the local coordinate system to a point v2 in the mother coordinate system.

HGeomVector v2=mother.transFrom(v1)

HGeomVector HGeomTransform::transTo(const HGeomVector& p) const
transforms a point v1 from the local mother coordinate system to a point v2 in the daughter coordinate system.

HGeomVector v2=daughter.transTo(v1)

The simple macro below with hard-coded numbers for testing shows an example how to transform a MDC Geant
hit from the layer coordinate system to a hit in the sector coordinate system.
It needs the initialized (here from Oracle) parameter containers ”SpecGeomPar“ and ”MdcGeomPar“.

{
Hades * myHades=new Hades ;
HSpec t rome te r * spec =gHades−>g e t S e t u p ( ) ;
HRuntimeDb* r t d b =gHades−>getRunt imeDb ( ) ;

HMdcDetector * mdc=new HMdcDetector ;
I n t t mdcMods [ 6 ] [ 4 ] =

{ {1 , 1 , 1 , 1} ,
{1 , 1 , 1 , 1} ,
{1 , 1 , 1 , 1} ,
{1 , 1 , 1 , 1} ,
{1 , 1 , 1 , 1} ,
{1 ,1 ,1 ,1} } ;

f o r ( I n t t i =0 ; i <6; i ++) mdc−>s e t M o d u l e s ( i , mdcMods [ i ] ) ;
spec−>a d d D e t e c t o r ( mdc ) ;

HParOra2Io * i n p u t = new HParOra2Io ;
i n p u t−>open ( ) ;
r t d b−>s e t F i r s t I n p u t ( i n p u t ) ;

HSpecGeomPar* specGeomPar = ( HSpecGeomPar * ) ( r t d b−>g e t C o n t a i n e r ( ” SpecGeomPar ” ) ) ;
HMdcGeomPar* mdcGeomPar = ( HMdcGeomPar * ) ( r t d b−>g e t C o n t a i n e r ( ”MdcGeomPar” ) ) ;

r t d b−>i n i t C o n t a i n e r s ( 1 2 0 0 0 ) ; / / i d e a l geomet ry f o r APR12

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / example Geant h i t w i th x , y p o s i t i o n o f t r a c k e n t e r i n g t h e volume i n f o r w a r d d i r e c t i o n
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / HGeantMdc* f Ge an t ;
/ / I n t t sectorNum = ( I n t t ) ( fGeant−>g e t S e c t o r ( ) ) ;
/ / I n t t moduleNum = ( I n t t ) ( fGeant−>getModule ( ) ) ;
/ / I n t t layerNum = ( I n t t ) ( fGeant−>g e t L a y e r ( ) ) ;
/ / F l o a t t x , y , t o f , p t o t ;
/ / fGeant−>g e t H i t ( x , y , t o f , p t o t ) ;

/ / Example v a l u e s f o r t e s t i n g :
I n t t sectorNum = 1 , moduleNum = 0 , layerNum = 3 ;
F l o a t t x = 0 . F , y = 0 . F ;

/ / g e t s e c t o r t r a n s f o r m a t i o n
HGeomVolume* s e c t o r = specGeomPar−>g e t S e c t o r ( sectorNum ) ;
HGeomTransform& s e c t o r T r a n s = s e c t o r−>g e t T r a n s f o r m ( ) ;

/ / g e t module t r a n s f o r m a t i o n
HModGeomPar* mdcModule = mdcGeomPar−>getModule ( sectorNum , moduleNum ) ;
HGeomTransform& modTransLab = mdcModule−>ge tL abTrans f o rm ( ) ;

/ / g e t l a y e r t r a n s f o r m a t i o n
HGeomVolume* l a y e r = mdcModule−>getRefVolume ( )−>getComponent ( layerNum ) ;
HGeomTransform& l a y e r T r a n s = l a y e r−>g e t T r a n s f o r m ( ) ;

HGeomVector h i t L a y e r , h i tModule , h i tLab , h i t S e c t o r ;

/ / s e t x , y from Geant h i t , z a t e n t r a n c e i n t o volume ( p o i n t s 0−3)
h i t L a y e r . se tX ( x ) ;
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h i t L a y e r . se tY ( y ) ;
h i t L a y e r . s e t Z ( l a y e r−>g e t P o i n t ( 0 )−>ge tZ ( ) ) ;
h i t L a y e r . p r i n t ( ) ;

/ / t r a n s f o r m from l a y e r t o module c o o r d i n a t e sys tem
hi tModu le = l a y e r T r a n s . t r a n s F r o m ( h i t L a y e r ) ;
h i tModu le . p r i n t ( ) ;

/ / t r a n s f o r m from module t o LAB sys tem
h i t L a b = modTransLab . t r a n s F r o m ( h i tModu le ) ;
h i t L a b . p r i n t ( ) ;

/ / t r a n s f o r m from LAB sys tem t o s e c t o r c o o r d i n a t e sys tem
h i t S e c t o r = s e c t o r T r a n s . t r a n s T o ( h i t L a b ) ;
h i t S e c t o r . p r i n t ( ) ;

/ / o r do i t a l l i n one l i n e
h i t S e c t o r = s e c t o r T r a n s . t r a n s T o ( modTransLab . t r a n s F r o m ( l a y e r T r a n s . t r a n s F r o m ( h i t L a y e r ) ) ) ;

d e l e t e gHades ;
}



Chapter 4

The HADES Oracle database

4.1 Overview
The HADES database is the central place, where information and parameters from the various systems flow
together: the file catalog is filled by the DAQ and the EPICS slow control data are stored online.

Figure 4.1: Overview

Many users store and retrieve data either by programs or web interfaces: the beam time logbook, information about
the detector hardware and electronics setup, the run quality, the geometry and alignment, analysis parameters and
conditions.
All these data are related by timestamps.

4.2 The version management of parameter containers
Most parameters used by the analysis change over time and need a version management in Oracle. Some data
can have only one valid value at a certain date as for example the position of a certain cable, other ones may even
change over time for a certain DAQ or simulation run depending on the status of the analysis (different generations
of DST productions).

The major requirements are:

• It must be possible to get a consistent set of parameters at any date.

• To keep the history, no information, even if it is wrong, should to be overwritten without trace, to get an
answer on questions like this: “Which parameters have I used when I did the analysis of these runs six
months ago?”
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• Good performance

All tree- and condition-style parameter containers have a three dimensional version management (fig: 4.2):

1. time axis of runs

2. time axis of history

3. parameter context

A version is valid for a certain time range on the runs axis and on the history axis (defines a 2-dim plane) and for
a specific parameter context (different 2-dim planes with individual time ranges).

Figure 4.2: Parameters for the version management

A parameter or parameter set has 5 variables in Oracle for the version management:
Variable Description

valid since First date when the entry is valid.

valid until Last date when the entry is still valid.
(High date “01-JAN-4000 00:00:00“ for last version actually still valid)

date create Date when a version is inserted

invalid since Date when the entry is replaced by a new or better version and therefore gets invalid.
(High date “01-JAN-4000 00:00:00“ for valid version, historic dates for invalid ones)

context id Identifier of the parameter context

Valid since and valid until define a time range on the runs axis. They are defined by the user in the WebDB
validation form.
Date create and invalid since define a time range on the history axis and are set automatically by the validation
interface.

Additionally the author and a description is stored for each version.

Example:
Figure 4.3: A user validates a version 1 of for example calibration parameters at the beginning of a beam time
starting at valid since 1. He does not specify an end of the time range, but leaves it open. The program sets the
end to the January 1st in year 4000.
The analysis of every new run will now get the version 1.
After some time, after for example new pedestals have been taken, he validates a new version 2, starting at
valid since 2, and again open-end.
The web interface first changes the value of the invalid since column in the version 1 record from year 4000 to
the actual date minus one second. Then it inserts the version 1 again with the time range ending at valid until 1.
This is one second less than the new valid since of version 2. Then it inserts the new version 2. This leads to three
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Figure 4.3: Finding the version (1)

rectangles which do not overlap.
Now every new run is initialized with version 2.
Figure 4.4: After a re-calibration maybe after the beam time, the user comes up with new version 3 and 4, which
replace the old ones.

Figure 4.4: Finding the version(2)

Not all parameter containers are independent. Therefore we create before a DST production a beam time specific
parameter release, which is a history date with a name stored in the data base. By default the last parameter release
is used for initialization. But the user can overrule this in the macro and set any history date.
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4.3 The WebDB Site
All web interfaces are accessible from the WebDB Site after login.

Login:
Direct link:

https://hades-db.gsi.de/pls/hades_webdb/hxsite.main
Click on Login button to get the login form.

From the HADES web page:
⇒ internal⇒WebDB
The login form pops up.

Login as user (not case sensitive)
hades This user has read-only access to most of the applications and can insert entries into the beam time

log book and the shift plan of a beam time.
xxx oper Each detector and the DAQ have specific access accounts to insert and change data via forms,

mdc oper for example can validate MDC parameters.

Fig. 4.5 shows the page after login.
All applications are stored in a tree-like folder structure. The navigation on the left side shows the links to the
folders accessible by the user, the right side their content (here the content of the ROOT folder).

Figure 4.5: The WebDB Site

Tip: In the upper left part you can see the user name. The web browser typically keeps the http authentification
after logout. When you switch from user hades to xxx oper you might still be logged in as user hades. You will
not see some detector specific folders or applications or get error messages (“Insufficient privileges”).
Either clear the private cache or kill all browser windows and start again from a new one.
The next pages show some WebDB applications useful for analysis users (Status at 20-JUL-2015).

4.4 Experiments
The most central table in Oracle is the one for experiments. It defines a time range for DAQ runs and simulation
reference runs, beam time logbook entries, shift plans and many more.

The application “Experiment info“ in the folder “Beamtime & runs” allows to search for experiments. Fig. 4.6
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shows the form1 and fig. 4.7 the corresponding result. The yellow lines shows the beam times and detector tests in
the HADES cave, the blue ones the simulation projects (location VIRTUAL) and the red line a beam time outside
GSI2.
The time range begin - end and the location is used to get the lists of runs in the analysis interface.

Figure 4.6: Form to search for experiments

Figure 4.7: List of experiments in specified time range

4.4.1 DAQ runs
DAQ runs are stored in Oracle online by Perl scripts and can be shown in the beam time logbook. Not shown there
are the list of files (one for each event builder) belonging to the run.
The master event builder defines the run id (time of the first event in seconds since 01-JAN-1970 minus 1.2× 109)
common for all event builder files. The smallest start time of all files with non-zero events is stored as start time
of this run. All files with the same run id use this start time for the initialization of the analysis parameters.
The common run type is defined by the file prefix, for example run type BEAM by prefix be, COSMIC by co.

The application “Charts of beam time and run statistics“ in folder “Beamtime &runs” (topic Monitoring)
allows to show the statistic for beam time runs and the corresponding event builder files.
After selecting a beam time one gets the form shown in the upper part of fig. 4.8. See the HELP for instructions to
filter the data and to produce different bar charts (for example number of runs, number of events, . . . ).
The lower part in the figure shows the result of the selection grouped by day.
The color indicates the mean magnet current (always averaged over the time range of one bar).
If one clicks on the day link one would get the results by hour and if one clicks there on an hour link one gets the
list of files with non-zero events. Fig. 4.9 shows an example.

1Some applications are shown in the full window. The icon link “Back to folder“ leads back the the folder page with the navigation bar on
the left side.

2To use the beam time logbook a beam time must be defined.
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Figure 4.8: Beam time and run statistic

Figure 4.9: DAQ runs and files

4.4.2 Simulation projects and reference runs
The version management in Oracle is based on time ranges. Each DAQ run has a start time and this time stamp
(together with the history date and the context) defines the version used for the initialization of this run. Runs are
taken in consecutive order and have no time overlap.
On the other hand simulations are done in parallel for different beam times or proposals for future experiments
and the real start time is not a good ordering parameter.
To use the same tables/views and interfaces in Oracle it was necessary to give simulation runs artificial timestamps
and to group them in projects and sub-projects.3

A simulation project is typically a simulation for a beam time (example APR12SIM) and has also the same time
range. But to do simulations for future experiments, for example to simulate the replacement of the Shower detector
by the ECAL, and to store dedicated geometry setups for it, some projects have been added with intermediate time
ranges (example ECAL13SIM).

3The additional grouping in generations was discarded for simulation projects since 2010.
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Each project contains sub-projects with fixed

• projectile + target system
• projectile energy
• field setting
• target

Each sub-project has an artificial time range of one day. It has at least one reference run with a descriptive name
and a run id easy to remember. The first reference run typically starts at midnight and has a duration of only one
second.
The run id is used in the analysis as reference run for the initialization of parameter containers, while the name is
used in the HGeant2 configuration file to read the geometry (see 3.5.1).

Fig. 4.10 shows the WebDB application in folder “Analysis⇒ Simulation” which allows to get the list of reference
runs for a selected simulation project, here as example for the simulations for the Pion beam time in August 2014.

Figure 4.10: Simulation sub-projects and reference runs

If people validate parameters for simulation they use links in pop-up windows showing the projects and sub-
projects names. A click on the link adds the corresponding time in the form, time begin for valid since, time end
for valid until.
Also in the public interface typically only the names of the reference runs are visible, not the time stamps.

Because the time stamps are so artificial and the rules hard to remember, a WebDB interface was developed to
make it more comfortable to add projects and sub-projects and to avoid mistakes. The link is in the same folder
but one needs to login as a special user to execute it.

4.5 The WebDB folder Hydra2 Params
For the change from Hydra1 to Hydra2 a major revision of the Oracle production accounts was done in 2009.
Backward compatibility was not required. Many new accounts were created with partially different table design.
Only the last versions of the parameters were copied into these tables and validated since 01-JAN-2010. The
Hydra2 analysis interface cannot read Hydra1 parameter containers and vice versa.
Many web interfaces were cleaned and modernized (new framework with CSS and Javascript). The old Hydra1
web interfaces were not touched and still use the old layout.

The folder “Analysis⇒ Hydra2 Params” (Fig. 4.11) contains the applications related to parameter containers in
Hydra2. It contains also sub-folders for tree- and condition-style parameter containers.
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Figure 4.11: The WebDB folder Analysis⇒ Hydra2 Params

4.5.1 Parameter releases
Fig. 4.12 shows an example of the application “Show Hydra2 parameter releases”.
As first step one fills the form in the upper part and selects one or more beam times and/or simulation projects. If
one then clicks on Show one gets the list of all parameter releases. The green line shows the current one, which
would be used for initialization if no history date it set explicitly.

Figure 4.12: Hydra2 parameter releases

4.5.2 Overview of parameter containers
Fig. 4.13 shows an example of the application “Hydra2 parameter containers”.
For a selected beam time it lists all parameter containers (still missing: geometry parameter containers) with the



4.6. CONDITION-STYLE PARAMETER CONTAINERS 45

time stamp of the last change, in red the ones which changed since the last parameter release4.

Figure 4.13: Hydra2 parameter containers overview

The navigation bar on the left side provides access to the parameter containers grouped by the shared libraries.
Click on a shared library to see the links to the data pages for the parameter containers in this library.

4.6 Condition-style parameter containers

Figure 4.14: Storage of condition-style parameter containers

Each parameter belongs to a parameter container, has a name and a type. Possible types are the basic ROOT
c-types, but also any class derived from TObject.
Different data objects (= different versions) exist for each parameter. The data are stored as byte array either in

4In the entrance form one may set a date to highlight all later changes. This might be usesful if one created a parameter ROOT file once and
wants to see which parameters changed meanwhile.
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a RAW column for single number values and small arrays or in a binary large object (BLOB). Also stored is the
number of values and for classes the class version, for ROOT classes additionally the streamer info and the ROOT
version for backward compatibility. Basic types can be decoded in the web interface, classes only in the c++
interface with the ROOT streamer.

Each data object has its own version management, which allows to add a new parameter or to discard an old
parameter no longer needed without any change of the other parameters. The analysis interface reads all parameters
valid for the specified run and history date and stores them in a list. The parameter container takes from the list
only the parameters (= data members) in the current class version. This makes the interface code independent.

4.6.1 Search for parameter sets
Fig. 4.15 shows the applications in the folder “Hydra2 Params ⇒ Params & Conds” for condition-style
parameter containers.

Figure 4.15: Folder Hydra2 Params⇒ Params & Conds

The application “Show parameter sets” allows to search for the parameter sets of a selected parameter container
and experiment. Fig. 4.16 shows the result for the parameter container MdcDigiPar and beam time AUG14.5

The program searches for all valid parameters in the beam time range. If one or more parameters change in this
time range one will see more than one set. The time range of one set is the maximum of the valid since of the
parameters and the minimum of all valid until.

Figure 4.16: Parameters sets of class HMdcDigiPar

5For event embedding simulation parameters must be also validated for beam runs.
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The link Show displays the valid data, the time stamps of the version management and a link to display the
comment (fig. 4.17). Some columns may be sorted, here for Date Create.

Figure 4.17: Parameters of class HMdcDigiPar

The form in fig. 4.17 allows to compare parameter sets. In this example one will see the differences of the data
compared to the historic data valid before the last validation at 10-JUL-2015 16:01:53 (fig. 4.18).

Figure 4.18: Result of comparison
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In this example the first set is the historic one, the second the actual valid set. As Valid At for the first set,
one chooses the last Valid Since of all parameters. As History Date one puts a time stamp at least one
second earlier as the last Date Create (if omitted the time part is set to 00:00:00).
Fig. 4.18 shows the result. The differences are shown in red. As expected two parameters were changed.

For event embedding in the analysis it is essential that the parameters needed by the digitizer are the same for beam
and simulation runs. To check this one can compare the parameters by choosing different contexts in the form, but
the same Valid At and History Date. The parameter values should be the same, only the Date Create
is typically different, because two validations, one for beam and one for simulation runs were done.

4.6.2 Adding a new class
The folder “Hydra2 Params ⇒ Params & Conds“ contains also the non-public applications to store, validate
and change condition-style parameter containers.
The privilege to manage the data is granted by library. For example the account TOF OPER can manage parameter
containers in libTof (and also libStart). The drop-down menus only show classes or libraries the user logged in can
manage.
If one creates a new condition-style parameter container in Hydra2 one must add this class and its context in
Oracle before one can write the parameters into the database. The application “Show, add and change parameter
classes and its contexts (restricted access)” lists all parameter containers the user can manage and below a button
Add New Class. It leads to a form where one selects the library, specifies the class name, the name of the
parameter container, the standard context name and the run type(s) for the context (beam runs, simulations runs or
both).
In the list of parameter containers it shows up as a red line. This means, one can write the parameters to Oracle
but not validate them (no link). First Jochen Markert or Ilse Koenig must confirm the new class. As long as
not validated the class and the data can be deleted from Oracle, once validated this is not allowed anymore (and
very complicated). The confirmation is a kind of security check to avoid the storage of parameter containers not
accepted in Hydra2 and code not committed to SVN.

4.6.3 Parameter validation
If one writes a condition-style parameter container into Oracle, the data are not stored in the final tables but
in intermediate so-called LOAD tables. Here parameters can be changed, even new parameters added. After
validation the data can be removed from the LOAD tables.6

Figure 4.19: Show and validate parameters in the LOAD tables

The application “Show and change LOAD tables and insert into FINAL tables” shows all sets in the LOAD
tables for a selected parameter container, in the upper part of figure 4.19 as example for the parameter container

6One should only keep standard versions in the LOAD tables, which one must validate more often for different time ranges, for example
different versions of MagnetPar with the standard current settings. All others should be deleted to avoid mistakes.
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MagnetPar. The link Validate of the uppermost version leads to the validation form below. Here one chooses
the run type (Beam or Simul) and specifies the validity time range.
The link Beam times lists all beam times with their begin and end dates as links. If one clicks on a link the
corresponding date is transferred to the form field.
For more details read the Help.

Figure 4.20 shows the result if one clicks on the button Compare & Insert. The program loops over all
parameters, for each compares the new value with the value(s) valid in the specified time range and shows a
preview of all changes.
Figure 4.21 on page 50 shows the corresponding Help page with a detailed description.

Figure 4.20: Preview of validation for condition-style parameter containers

How to get a valid parameter set into the LOAD tables

The application “Show and change parameter sets” does not only allow to change the validity time ranges of
valid parameter sets or individual parameters (see Help for details) but also provides a form to get a valid set into
the LOAD tables without the need to run a macro in Hydra2.

Recipe:
In the form select the parameter container and the beam time or simulation project (or specify a longer time range).
Click on the button Show Sets.
This shows all valid parameter sets. Click on the Show link of the version you want to copy.
It shows the data of all parameters in this set and below a form to copy the data. Specify the author and the
comment and click on Copy Set.

4.7 Tree-style parameter containers
Although the storage of tree-style parameters is completely different the WebDB interface is quite similar to
condition-style parameter containers.
The main difference comes from the fact, that the analysis interface creates a version and writes the data of this
version directly into the final tables.
The values are stored as rows, each consisting of the version id, an address identifier (for example a cell id) and
the values of all data members in separate columns (similar to the ASCII file). All rows with the same version id
build one parameter set.
The validation interface validates the version number. It simply compares the version numbers with the ones
actually valid in the specified time range. The parameters themselves are not compared.

All interfaces are in the folder Hydra2 Params⇒ Tree-Organized Params.
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Figure 4.21: Help page of validation preview for condition-style parameter containers
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4.8 Geometry
The WebDB folder Geometry contains various public applications to display the geometry information (valid
versions, tree of detector volumes and volume, media, hit definitions) and non-public applications for storage and
changes.
Fig. 4.22 shows as example the result of the application “Show geometry” after selecting the beam time APR12
in the entry form (not shown). It shows all versions validated for real runs in this time range.

Figure 4.22: Geometry set for beam time APR12

If one clicks on the link of a version name one gets the full geometry tree of this version. Fig. 4.23 shows on the
left side for example the MDC geometry tree. The link of the volume name pops up a separate window and shows
the volume definition, here on the right side for the volume DR1M1, the MDC plane 1 mother volume in sector 1.

Figure 4.23: Mdc geometry tree of version MdcIdealApr12
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If one would instead select the simulation project APR12 in the entry form of the application one
would see two sets for the two reference runs apr12sim mediumfieldideal auau with ideal geometry and
apr12sim mediumfieldalign auau with the alignment geometry. Each set also includes the valid versions of the
coils, the frames and the Start detector (not needed for the APR12 analysis). Instead of the link Show alignment
one would see the link Show hit definition.

Fig. 4.24 shows the corresponding alignment versions for beam time APR12.

Figure 4.24: Alignment for beam time APR12

Unfortunately the generic interface does not allow to display the detector by name, but only by id:
1: TOF, 2: MDC, 5: Shower, 8: Start, 10: Target, 11: Forward Wall, 13: RPC, 14: EMC

The link of the version number shows the alignment LAB-transformation, for example in fig. 4.25 the 15 target
positions of the segmented Gold target.

Figure 4.25: Target alignment for beam time APR12
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4.9 Explore the WebDB Site
Take some time and click on some folders and applications. Most pages accessible by user HADES (and all other
accounts besides HADES ANA) have “Help” pages.

Table 4.1 shows these not-restricted folders and a short description.

Main folder Description
Beam time & runs Experiment infos, DAQ runs and logbooks
DAQ & TRB DAQ and Trbnet configuration, TRB2 INL corrections
Magnet and Cryo Monitoring of Magnet, Cryo and Cave temperatures and pressures

Slow Control Root folder for interfaces to Slow Control data (contains sub-folders for online
and offline storage)

RICH Folder for RICH detector since 2010 (contains sub-folder for data before 2010)
MDC Folder for MDC detector since 2010 (contains sub-folder for data before 2010)
RPC Folder for RPC detector since 2010 (contains sub-folder for data before 2010)

Analysis⇒ Hydra1 Params Hydra1 parameters with sub-folders for condition- and tree-style parameter
containers

Analysis⇒ Hydra2 Params Hydra2 parameters with sub-folders for condition- and tree-style parameter
containers

Analysis⇒ Simulation Simulation projects and runs
Analysis⇒ Geometry Geometry for simulation and analysis
Analysis⇒ Run Validation Run validation for DST production
Analysis⇒ Analysis logbook old HADES Analysis Logbook not used anymore
HADES Collaboration HADES institutes, people and author lists
Documentation Documentation of Oracle accounts and utility software

Table 4.1: WebDB folders accessible by user HADES
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