//*-- Author : M. Sanchez //*-- Modified : 07.03.2001 (M. Sanchez) #include "hgeomvertexfit3.h" #include //_HADES_CLASS_DESCRIPTION //////////////////////////////////////////////// //HGeomVertexFit // // Calculates the point of maximun approach to any given //set of n tracks with user specified weights. // // To start the operation the function reset() is called, then //addLine() should be used on all tracks on the sample and //finally getVertex() will provide the desired point. // // Note that getVertex() is not destructive, you can continue //adding lines after getVertex() was called //////////////////////////////////////////////// HGeomVertexFit3::HGeomVertexFit3(void) { // The default constructor } HGeomVertexFit3::~HGeomVertexFit3(void) { // Everything that is constructed has to be destructed } void HGeomVertexFit3::addLine(const HGeomVector &r, const HGeomVector &alpha, const Double_t w) { // Function to add lines to the fit. // Input // r --> A point in the straight line // alpha --> Direction vector // w --> weight of this line in the fit // cov --> Covariance matrix with elements // sigma(x, y, x', y') // zv --> Stimation of z coord. of vertex Float_t sx = alpha.getX() / alpha.getZ(); Float_t sy = alpha.getY() / alpha.getZ(); Float_t x0 = r.getX() - r.getZ()*sx; Float_t y0 = r.getY() - r.getZ()*sy; fM(0,0) = w * 1 ; fM(0,1) = w * 0; fM(0,2) = w * -sx; fM(1,1) = w * 1; fM(1,2) = w * -sy; fM(2,2) = w * sx*sx + w * sy*sy; fSys(0,0)+=fM(0,0); fSys(0,1)+=fM(0,1); fSys(0,2)+=fM(0,2); fSys(1,1)+=fM(1,1); fSys(1,2)+=fM(1,2); fSys(2,2)+=fM(2,2); fB.X() += w * x0; fB.Y() += w * y0; fB.Z() += - w * x0*sx - w * y0*sy; } void HGeomVertexFit3::getVertex(HGeomVector &out) { // This method fills the vector "out" with the coordinates //of the point of maximun approach to the lines added with //addLine() Double_t det=0; det=fSys(0,0)*fSys(1,1)*fSys(2,2) + fSys(0,1)*fSys(1,2)*fSys(0,2) + fSys(0,1)*fSys(1,2)*fSys(0,2) - fSys(0,2)*fSys(1,1)*fSys(0,2) - fSys(0,1)*fSys(0,1)*fSys(2,2) - fSys(1,2)*fSys(1,2)*fSys(0,0); fM(0,0)=fSys(1,1) * fSys(2,2) - fSys(1,2) * fSys(1,2); fM(0,1)=fSys(1,2) * fSys(0,2) - fSys(0,1) * fSys(2,2); fM(0,2)=fSys(0,1) * fSys(1,2) - fSys(1,1) * fSys(0,2); fM(1,1)=fSys(0,0) * fSys(2,2) - fSys(0,2) * fSys(0,2); fM(1,2)=fSys(0,1) * fSys(0,2) - fSys(0,0) * fSys(1,2); fM(2,2)=fSys(0,0) * fSys(1,1) - fSys(0,1) * fSys(0,1); fM(1,0)=fM(0,1); fM(2,0)=fM(0,2); fM(2,1)=fM(1,2); fM/=(det); #if DEBUG_LEVEL>1 cout << "Det= " << det << endl; cout << "Equation system: \n"; for (Int_t i=0;i<3;i++) { for (Int_t j=0;j<3;j++) cout << fSys(i,j) << "\t"; cout << fB(i) << endl; } cout << "Inverse system matrix: \n"; for (Int_t i=0;i<3;i++) { for (Int_t j=0;j